![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version Unicode version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
rexeq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2764 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2764 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | rexeqf 3135 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 |
This theorem is referenced by: rexeqi 3143 rexeqdv 3145 rexeqbi1dv 3147 unieq 4444 exss 4931 qseq1 7796 1sdom 8163 pssnn 8178 indexfi 8274 supeq1 8351 bnd2 8756 dfac2 8953 cflem 9068 cflecard 9075 cfeq0 9078 cfsuc 9079 cfflb 9081 cofsmo 9091 elwina 9508 eltskg 9572 rankcf 9599 elnp 9809 elnpi 9810 genpv 9821 xrsupsslem 12137 xrinfmsslem 12138 xrsupss 12139 xrinfmss 12140 hashge2el2difr 13263 isdrs 16934 isipodrs 17161 neifval 20903 ishaus 21126 2ndc1stc 21254 1stcrest 21256 lly1stc 21299 isref 21312 islocfin 21320 tx1stc 21453 isust 22007 iscfilu 22092 met1stc 22326 iscfil 23063 isgrpo 27351 chne0 28353 pstmfval 29939 dya2iocuni 30345 noetalem3 31865 altxpeq1 32080 altxpeq2 32081 elhf2 32282 bj-sngleq 32955 cover2g 33509 indexdom 33529 istotbnd 33568 pmapglb2xN 35058 paddval 35084 elpadd0 35095 diophrex 37339 hbtlem1 37693 hbtlem7 37695 sprval 41729 sprsymrelfvlem 41740 sprsymrelfv 41744 sprsymrelfo 41747 |
Copyright terms: Public domain | W3C validator |