| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota5f | Structured version Visualization version Unicode version | ||
| Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| riota5f.1 |
|
| riota5f.2 |
|
| riota5f.3 |
|
| Ref | Expression |
|---|---|
| riota5f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota5f.3 |
. . 3
| |
| 2 | 1 | ralrimiva 2966 |
. 2
|
| 3 | riota5f.2 |
. . . 4
| |
| 4 | a1tru 1500 |
. . . . . . 7
| |
| 5 | reu6i 3397 |
. . . . . . . . 9
| |
| 6 | 5 | adantl 482 |
. . . . . . . 8
|
| 7 | nfv 1843 |
. . . . . . . . . 10
| |
| 8 | nfv 1843 |
. . . . . . . . . . 11
| |
| 9 | nfra1 2941 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | nfan 1828 |
. . . . . . . . . 10
|
| 11 | 7, 10 | nfan 1828 |
. . . . . . . . 9
|
| 12 | nfcvd 2765 |
. . . . . . . . 9
| |
| 13 | nfvd 1844 |
. . . . . . . . 9
| |
| 14 | simprl 794 |
. . . . . . . . 9
| |
| 15 | simpr 477 |
. . . . . . . . . . 11
| |
| 16 | simplrr 801 |
. . . . . . . . . . . 12
| |
| 17 | simplrl 800 |
. . . . . . . . . . . . 13
| |
| 18 | 15, 17 | eqeltrd 2701 |
. . . . . . . . . . . 12
|
| 19 | rsp 2929 |
. . . . . . . . . . . 12
| |
| 20 | 16, 18, 19 | sylc 65 |
. . . . . . . . . . 11
|
| 21 | 15, 20 | mpbird 247 |
. . . . . . . . . 10
|
| 22 | a1tru 1500 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | 2thd 255 |
. . . . . . . . 9
|
| 24 | 11, 12, 13, 14, 23 | riota2df 6631 |
. . . . . . . 8
|
| 25 | 6, 24 | mpdan 702 |
. . . . . . 7
|
| 26 | 4, 25 | mpbid 222 |
. . . . . 6
|
| 27 | 26 | expr 643 |
. . . . 5
|
| 28 | 27 | ralrimiva 2966 |
. . . 4
|
| 29 | rspsbc 3518 |
. . . 4
| |
| 30 | 3, 28, 29 | sylc 65 |
. . 3
|
| 31 | nfcvd 2765 |
. . . . . . . 8
| |
| 32 | riota5f.1 |
. . . . . . . 8
| |
| 33 | 31, 32 | nfeqd 2772 |
. . . . . . 7
|
| 34 | 7, 33 | nfan1 2068 |
. . . . . 6
|
| 35 | simpr 477 |
. . . . . . . 8
| |
| 36 | 35 | eqeq2d 2632 |
. . . . . . 7
|
| 37 | 36 | bibi2d 332 |
. . . . . 6
|
| 38 | 34, 37 | ralbid 2983 |
. . . . 5
|
| 39 | 35 | eqeq2d 2632 |
. . . . 5
|
| 40 | 38, 39 | imbi12d 334 |
. . . 4
|
| 41 | 3, 40 | sbcied 3472 |
. . 3
|
| 42 | 30, 41 | mpbid 222 |
. 2
|
| 43 | 2, 42 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 df-riota 6611 |
| This theorem is referenced by: riota5 6637 |
| Copyright terms: Public domain | W3C validator |