MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo2i Structured version   Visualization version   Unicode version

Theorem rmo2i 3527
Description: Condition implying restricted "at most one." (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo2i  |-  ( E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo2i
StepHypRef Expression
1 rexex 3002 . 2  |-  ( E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y )  ->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
2 rmo2.1 . . 3  |-  F/ y
ph
32rmo2 3526 . 2  |-  ( E* x  e.  A  ph  <->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
41, 3sylibr 224 1  |-  ( E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1704   F/wnf 1708   A.wral 2912   E.wrex 2913   E*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475  df-ral 2917  df-rex 2918  df-rmo 2920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator