| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmo2 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of
restricted "at most one." Note that
|
| Ref | Expression |
|---|---|
| rmo2.1 |
|
| Ref | Expression |
|---|---|
| rmo2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 2920 |
. 2
| |
| 2 | nfv 1843 |
. . . 4
| |
| 3 | rmo2.1 |
. . . 4
| |
| 4 | 2, 3 | nfan 1828 |
. . 3
|
| 5 | 4 | mo2 2479 |
. 2
|
| 6 | impexp 462 |
. . . . 5
| |
| 7 | 6 | albii 1747 |
. . . 4
|
| 8 | df-ral 2917 |
. . . 4
| |
| 9 | 7, 8 | bitr4i 267 |
. . 3
|
| 10 | 9 | exbii 1774 |
. 2
|
| 11 | 1, 5, 10 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 df-ral 2917 df-rmo 2920 |
| This theorem is referenced by: rmo2i 3527 disjiun 4640 rmoeqALT 29327 poimirlem2 33411 rmoanim 41179 |
| Copyright terms: Public domain | W3C validator |