MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo2 Structured version   Visualization version   Unicode version

Theorem rmo2 3526
Description: Alternate definition of restricted "at most one." Note that  E* x  e.  A ph is not equivalent to  E. y  e.  A A. x  e.  A ( ph  ->  x  =  y ) (in analogy to reu6 3395); to see this, let  A be the empty set. However, one direction of this pattern holds; see rmo2i 3527. (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo2  |-  ( E* x  e.  A  ph  <->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo2
StepHypRef Expression
1 df-rmo 2920 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 nfv 1843 . . . 4  |-  F/ y  x  e.  A
3 rmo2.1 . . . 4  |-  F/ y
ph
42, 3nfan 1828 . . 3  |-  F/ y ( x  e.  A  /\  ph )
54mo2 2479 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) )
6 impexp 462 . . . . 5  |-  ( ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
76albii 1747 . . . 4  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
8 df-ral 2917 . . . 4  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
97, 8bitr4i 267 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x  e.  A  ( ph  ->  x  =  y ) )
109exbii 1774 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
111, 5, 103bitri 286 1  |-  ( E* x  e.  A  ph  <->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704   F/wnf 1708    e. wcel 1990   E*wmo 2471   A.wral 2912   E*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475  df-ral 2917  df-rmo 2920
This theorem is referenced by:  rmo2i  3527  disjiun  4640  rmoeqALT  29327  poimirlem2  33411  rmoanim  41179
  Copyright terms: Public domain W3C validator