MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo3 Structured version   Visualization version   Unicode version

Theorem rmo3 3528
Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo3  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo3
StepHypRef Expression
1 df-rmo 2920 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 sban 2399 . . . . . . . . . . 11  |-  ( [ y  /  x ]
( x  e.  A  /\  ph )  <->  ( [
y  /  x ]
x  e.  A  /\  [ y  /  x ] ph ) )
3 clelsb3 2729 . . . . . . . . . . . 12  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
43anbi1i 731 . . . . . . . . . . 11  |-  ( ( [ y  /  x ] x  e.  A  /\  [ y  /  x ] ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) )
52, 4bitri 264 . . . . . . . . . 10  |-  ( [ y  /  x ]
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) )
65anbi2i 730 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  <->  ( (
x  e.  A  /\  ph )  /\  ( y  e.  A  /\  [
y  /  x ] ph ) ) )
7 an4 865 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  [ y  /  x ] ph ) )  <->  ( (
x  e.  A  /\  y  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
8 ancom 466 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  <->  ( y  e.  A  /\  x  e.  A )
)
98anbi1i 731 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( ph  /\ 
[ y  /  x ] ph ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
106, 7, 93bitri 286 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
1110imbi1i 339 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y )  <->  ( (
( y  e.  A  /\  x  e.  A
)  /\  ( ph  /\ 
[ y  /  x ] ph ) )  ->  x  =  y )
)
12 impexp 462 . . . . . . 7  |-  ( ( ( ( y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [ y  /  x ] ph ) )  ->  x  =  y )  <->  ( ( y  e.  A  /\  x  e.  A )  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
13 impexp 462 . . . . . . 7  |-  ( ( ( y  e.  A  /\  x  e.  A
)  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
)  <->  ( y  e.  A  ->  ( x  e.  A  ->  ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
1411, 12, 133bitri 286 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y )  <->  ( y  e.  A  ->  ( x  e.  A  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
1514albii 1747 . . . . 5  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
16 df-ral 2917 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
17 r19.21v 2960 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
1815, 16, 173bitr2i 288 . . . 4  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
1918albii 1747 . . 3  |-  ( A. x A. y ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
20 nfv 1843 . . . . 5  |-  F/ y  x  e.  A
21 rmo2.1 . . . . 5  |-  F/ y
ph
2220, 21nfan 1828 . . . 4  |-  F/ y ( x  e.  A  /\  ph )
2322mo3 2507 . . 3  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y ) )
24 df-ral 2917 . . 3  |-  ( A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
2519, 23, 243bitr4i 292 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
261, 25bitri 264 1  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   F/wnf 1708   [wsb 1880    e. wcel 1990   E*wmo 2471   A.wral 2912   E*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-cleq 2615  df-clel 2618  df-ral 2917  df-rmo 2920
This theorem is referenced by:  poimirlem25  33434  poimirlem26  33435
  Copyright terms: Public domain W3C validator