MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexex Structured version   Visualization version   Unicode version

Theorem rexex 3002
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex  |-  ( E. x  e.  A  ph  ->  E. x ph )

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 2918 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 exsimpr 1796 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  E. x ph )
31, 2sylbi 207 1  |-  ( E. x  e.  A  ph  ->  E. x ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   E.wex 1704    e. wcel 1990   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-rex 2918
This theorem is referenced by:  reu3  3396  rmo2i  3527  dffo5  6376  nqerf  9752  supsrlem  9932  vdwmc2  15683  toprntopon  20729  isch3  28098  19.9d2rf  29318  volfiniune  30293  bnj594  30982  bnj1371  31097  bnj1374  31099  dfrdg4  32058  bj-0nelsngl  32959  bj-ccinftydisj  33100  poimirlem25  33434  mblfinlem3  33448  mblfinlem4  33449  clsk3nimkb  38338  stoweidlem57  40274
  Copyright terms: Public domain W3C validator