Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxfval Structured version   Visualization version   Unicode version

Theorem rmxfval 37468
Description: Value of the X sequence. Not used after rmxyval 37480 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxfval  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  =  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) ) )
Distinct variable groups:    A, b    N, b

Proof of Theorem rmxfval
Dummy variables  n  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
a ^ 2 )  =  ( A ^
2 ) )
21oveq1d 6665 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( a ^ 2 )  -  1 )  =  ( ( A ^ 2 )  - 
1 ) )
32fveq2d 6195 . . . . . . . . 9  |-  ( a  =  A  ->  ( sqr `  ( ( a ^ 2 )  - 
1 ) )  =  ( sqr `  (
( A ^ 2 )  -  1 ) ) )
43oveq1d 6665 . . . . . . . 8  |-  ( a  =  A  ->  (
( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) )
54oveq2d 6666 . . . . . . 7  |-  ( a  =  A  ->  (
( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  =  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )
65mpteq2dv 4745 . . . . . 6  |-  ( a  =  A  ->  (
b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) )
76cnveqd 5298 . . . . 5  |-  ( a  =  A  ->  `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) )
87adantr 481 . . . 4  |-  ( ( a  =  A  /\  n  =  N )  ->  `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  =  `' ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) )
9 id 22 . . . . . 6  |-  ( a  =  A  ->  a  =  A )
109, 3oveq12d 6668 . . . . 5  |-  ( a  =  A  ->  (
a  +  ( sqr `  ( ( a ^
2 )  -  1 ) ) )  =  ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) )
11 id 22 . . . . 5  |-  ( n  =  N  ->  n  =  N )
1210, 11oveqan12d 6669 . . . 4  |-  ( ( a  =  A  /\  n  =  N )  ->  ( ( a  +  ( sqr `  (
( a ^ 2 )  -  1 ) ) ) ^ n
)  =  ( ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) ^ N ) )
138, 12fveq12d 6197 . . 3  |-  ( ( a  =  A  /\  n  =  N )  ->  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( a ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  (
( a  +  ( sqr `  ( ( a ^ 2 )  -  1 ) ) ) ^ n ) )  =  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) )
1413fveq2d 6195 . 2  |-  ( ( a  =  A  /\  n  =  N )  ->  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  ( ( a  +  ( sqr `  ( ( a ^
2 )  -  1 ) ) ) ^
n ) ) )  =  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  ( ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) ^ N ) ) ) )
15 df-rmx 37466 . 2  |- Xrm  =  (
a  e.  ( ZZ>= ` 
2 ) ,  n  e.  ZZ  |->  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  ( ( a  +  ( sqr `  ( ( a ^
2 )  -  1 ) ) ) ^
n ) ) ) )
16 fvex 6201 . 2  |-  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  (
( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ N ) ) )  e.  _V
1714, 15, 16ovmpt2a 6791 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  =  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ^cexp 12860   sqrcsqrt 13973   Xrm crmx 37464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rmx 37466
This theorem is referenced by:  rmxyval  37480
  Copyright terms: Public domain W3C validator