Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngmgp Structured version   Visualization version   Unicode version

Theorem rngmgp 41878
Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
Hypothesis
Ref Expression
rngmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
rngmgp  |-  ( R  e. Rng  ->  G  e. SGrp )

Proof of Theorem rngmgp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 rngmgp.g . . 3  |-  G  =  (mulGrp `  R )
3 eqid 2622 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2622 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
51, 2, 3, 4isrng 41876 . 2  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  G  e. SGrp  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
65simp2bi 1077 1  |-  ( R  e. Rng  ->  G  e. SGrp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  SGrpcsgrp 17283   Abelcabl 18194  mulGrpcmgp 18489  Rngcrng 41874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-rng0 41875
This theorem is referenced by:  isringrng  41881  rngcl  41883  isrnghmmul  41893  idrnghm  41908  c0rnghm  41913
  Copyright terms: Public domain W3C validator