Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrng Structured version   Visualization version   Unicode version

Theorem isrng 41876
Description: The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
isrng.b  |-  B  =  ( Base `  R
)
isrng.g  |-  G  =  (mulGrp `  R )
isrng.p  |-  .+  =  ( +g  `  R )
isrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isrng  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  G  e. SGrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
Distinct variable groups:    x, B, y, z    x, R, y, z    x,  .x. , y, z   
x,  .+ , y, z
Allowed substitution hints:    G( x, y, z)

Proof of Theorem isrng
Dummy variables  b 
r  t  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
2 isrng.g . . . . . 6  |-  G  =  (mulGrp `  R )
31, 2syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  (mulGrp `  r )  =  G )
43eleq1d 2686 . . . 4  |-  ( r  =  R  ->  (
(mulGrp `  r )  e. SGrp  <-> 
G  e. SGrp ) )
5 fvexd 6203 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  e. 
_V )
6 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
7 isrng.b . . . . . 6  |-  B  =  ( Base `  R
)
86, 7syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  =  B )
9 fvexd 6203 . . . . . 6  |-  ( ( r  =  R  /\  b  =  B )  ->  ( +g  `  r
)  e.  _V )
10 fveq2 6191 . . . . . . . 8  |-  ( r  =  R  ->  ( +g  `  r )  =  ( +g  `  R
) )
1110adantr 481 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  B )  ->  ( +g  `  r
)  =  ( +g  `  R ) )
12 isrng.p . . . . . . 7  |-  .+  =  ( +g  `  R )
1311, 12syl6eqr 2674 . . . . . 6  |-  ( ( r  =  R  /\  b  =  B )  ->  ( +g  `  r
)  =  .+  )
14 fvexd 6203 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  ( .r `  r )  e. 
_V )
15 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
1615adantr 481 . . . . . . . . 9  |-  ( ( r  =  R  /\  b  =  B )  ->  ( .r `  r
)  =  ( .r
`  R ) )
1716adantr 481 . . . . . . . 8  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  ( .r `  r )  =  ( .r `  R
) )
18 isrng.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
1917, 18syl6eqr 2674 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  ( .r `  r )  = 
.x.  )
20 simpllr 799 . . . . . . . 8  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  b  =  B )
21 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  t  =  .x.  )
22 eqidd 2623 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  x  =  x )
23 oveq 6656 . . . . . . . . . . . . . 14  |-  ( p  =  .+  ->  (
y p z )  =  ( y  .+  z ) )
2423ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
y p z )  =  ( y  .+  z ) )
2521, 22, 24oveq123d 6671 . . . . . . . . . . . 12  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
x t ( y p z ) )  =  ( x  .x.  ( y  .+  z
) ) )
26 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  p  =  .+  )
2726adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  p  =  .+  )
28 oveq 6656 . . . . . . . . . . . . . 14  |-  ( t  =  .x.  ->  (
x t y )  =  ( x  .x.  y ) )
2928adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
x t y )  =  ( x  .x.  y ) )
30 oveq 6656 . . . . . . . . . . . . . 14  |-  ( t  =  .x.  ->  (
x t z )  =  ( x  .x.  z ) )
3130adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
x t z )  =  ( x  .x.  z ) )
3227, 29, 31oveq123d 6671 . . . . . . . . . . . 12  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( x t y ) p ( x t z ) )  =  ( ( x 
.x.  y )  .+  ( x  .x.  z ) ) )
3325, 32eqeq12d 2637 . . . . . . . . . . 11  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  <->  ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) ) ) )
34 oveq 6656 . . . . . . . . . . . . . 14  |-  ( p  =  .+  ->  (
x p y )  =  ( x  .+  y ) )
3534ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
x p y )  =  ( x  .+  y ) )
36 eqidd 2623 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  z  =  z )
3721, 35, 36oveq123d 6671 . . . . . . . . . . . 12  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( x p y ) t z )  =  ( ( x 
.+  y )  .x.  z ) )
38 oveq 6656 . . . . . . . . . . . . . 14  |-  ( t  =  .x.  ->  (
y t z )  =  ( y  .x.  z ) )
3938adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
y t z )  =  ( y  .x.  z ) )
4027, 31, 39oveq123d 6671 . . . . . . . . . . . 12  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( x t z ) p ( y t z ) )  =  ( ( x 
.x.  z )  .+  ( y  .x.  z
) ) )
4137, 40eqeq12d 2637 . . . . . . . . . . 11  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) )  <->  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
4233, 41anbi12d 747 . . . . . . . . . 10  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  (
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  ( ( x 
.x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
4320, 42raleqbidv 3152 . . . . . . . . 9  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  ( A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
4420, 43raleqbidv 3152 . . . . . . . 8  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  ( A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
4520, 44raleqbidv 3152 . . . . . . 7  |-  ( ( ( ( r  =  R  /\  b  =  B )  /\  p  =  .+  )  /\  t  =  .x.  )  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
4614, 19, 45sbcied2 3473 . . . . . 6  |-  ( ( ( r  =  R  /\  b  =  B )  /\  p  = 
.+  )  ->  ( [. ( .r `  r
)  /  t ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
479, 13, 46sbcied2 3473 . . . . 5  |-  ( ( r  =  R  /\  b  =  B )  ->  ( [. ( +g  `  r )  /  p ]. [. ( .r `  r )  /  t ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
485, 8, 47sbcied2 3473 . . . 4  |-  ( r  =  R  ->  ( [. ( Base `  r
)  /  b ]. [. ( +g  `  r
)  /  p ]. [. ( .r `  r
)  /  t ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
494, 48anbi12d 747 . . 3  |-  ( r  =  R  ->  (
( (mulGrp `  r
)  e. SGrp  /\  [. ( Base `  r )  / 
b ]. [. ( +g  `  r )  /  p ]. [. ( .r `  r )  /  t ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) )  <->  ( G  e. SGrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x 
.x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) ) )
50 df-rng0 41875 . . 3  |- Rng  =  {
r  e.  Abel  |  ( (mulGrp `  r )  e. SGrp  /\  [. ( Base `  r )  /  b ]. [. ( +g  `  r
)  /  p ]. [. ( .r `  r
)  /  t ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
5149, 50elrab2 3366 . 2  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  ( G  e. SGrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) ) )
52 3anass 1042 . 2  |-  ( ( R  e.  Abel  /\  G  e. SGrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x 
.x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )  <->  ( R  e. 
Abel  /\  ( G  e. SGrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) ) )
5351, 52bitr4i 267 1  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  G  e. SGrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  SGrpcsgrp 17283   Abelcabl 18194  mulGrpcmgp 18489  Rngcrng 41874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-rng0 41875
This theorem is referenced by:  rngabl  41877  rngmgp  41878  ringrng  41879  isringrng  41881  rngdir  41882  lidlrng  41927  2zrngALT  41948  cznrng  41955
  Copyright terms: Public domain W3C validator