Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-fakeuninass Structured version   Visualization version   Unicode version

Theorem rp-fakeuninass 37862
Description: A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by Richard Penner, 29-Feb-2020.)
Assertion
Ref Expression
rp-fakeuninass  |-  ( A 
C_  C  <->  ( ( A  u.  B )  i^i  C )  =  ( A  u.  ( B  i^i  C ) ) )

Proof of Theorem rp-fakeuninass
StepHypRef Expression
1 rp-fakeinunass 37861 . 2  |-  ( A 
C_  C  <->  ( ( C  i^i  B )  u.  A )  =  ( C  i^i  ( B  u.  A ) ) )
2 eqcom 2629 . 2  |-  ( ( ( C  i^i  B
)  u.  A )  =  ( C  i^i  ( B  u.  A
) )  <->  ( C  i^i  ( B  u.  A
) )  =  ( ( C  i^i  B
)  u.  A ) )
3 incom 3805 . . . 4  |-  ( C  i^i  ( B  u.  A ) )  =  ( ( B  u.  A )  i^i  C
)
4 uncom 3757 . . . . 5  |-  ( B  u.  A )  =  ( A  u.  B
)
54ineq1i 3810 . . . 4  |-  ( ( B  u.  A )  i^i  C )  =  ( ( A  u.  B )  i^i  C
)
63, 5eqtri 2644 . . 3  |-  ( C  i^i  ( B  u.  A ) )  =  ( ( A  u.  B )  i^i  C
)
7 uncom 3757 . . . 4  |-  ( ( C  i^i  B )  u.  A )  =  ( A  u.  ( C  i^i  B ) )
8 incom 3805 . . . . 5  |-  ( C  i^i  B )  =  ( B  i^i  C
)
98uneq2i 3764 . . . 4  |-  ( A  u.  ( C  i^i  B ) )  =  ( A  u.  ( B  i^i  C ) )
107, 9eqtri 2644 . . 3  |-  ( ( C  i^i  B )  u.  A )  =  ( A  u.  ( B  i^i  C ) )
116, 10eqeq12i 2636 . 2  |-  ( ( C  i^i  ( B  u.  A ) )  =  ( ( C  i^i  B )  u.  A )  <->  ( ( A  u.  B )  i^i  C )  =  ( A  u.  ( B  i^i  C ) ) )
121, 2, 113bitri 286 1  |-  ( A 
C_  C  <->  ( ( A  u.  B )  i^i  C )  =  ( A  u.  ( B  i^i  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    u. cun 3572    i^i cin 3573    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator