Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-isfinite5 Structured version   Visualization version   Unicode version

Theorem rp-isfinite5 37863
Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some  n  e.  NN0. (Contributed by Richard Penner, 3-Mar-2020.)
Assertion
Ref Expression
rp-isfinite5  |-  ( A  e.  Fin  <->  E. n  e.  NN0  ( 1 ... n )  ~~  A
)
Distinct variable group:    A, n

Proof of Theorem rp-isfinite5
StepHypRef Expression
1 fvex 6201 . . . 4  |-  ( # `  A )  e.  _V
2 hashcl 13147 . . . . 5  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
3 isfinite4 13153 . . . . . 6  |-  ( A  e.  Fin  <->  ( 1 ... ( # `  A
) )  ~~  A
)
43biimpi 206 . . . . 5  |-  ( A  e.  Fin  ->  (
1 ... ( # `  A
) )  ~~  A
)
52, 4jca 554 . . . 4  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN0  /\  (
1 ... ( # `  A
) )  ~~  A
) )
6 eleq1 2689 . . . . . 6  |-  ( n  =  ( # `  A
)  ->  ( n  e.  NN0  <->  ( # `  A
)  e.  NN0 )
)
7 oveq2 6658 . . . . . . 7  |-  ( n  =  ( # `  A
)  ->  ( 1 ... n )  =  ( 1 ... ( # `
 A ) ) )
87breq1d 4663 . . . . . 6  |-  ( n  =  ( # `  A
)  ->  ( (
1 ... n )  ~~  A 
<->  ( 1 ... ( # `
 A ) ) 
~~  A ) )
96, 8anbi12d 747 . . . . 5  |-  ( n  =  ( # `  A
)  ->  ( (
n  e.  NN0  /\  ( 1 ... n
)  ~~  A )  <->  ( ( # `  A
)  e.  NN0  /\  ( 1 ... ( # `
 A ) ) 
~~  A ) ) )
109spcegv 3294 . . . 4  |-  ( (
# `  A )  e.  _V  ->  ( (
( # `  A )  e.  NN0  /\  (
1 ... ( # `  A
) )  ~~  A
)  ->  E. n
( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
) )
111, 5, 10mpsyl 68 . . 3  |-  ( A  e.  Fin  ->  E. n
( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )
)
12 df-rex 2918 . . 3  |-  ( E. n  e.  NN0  (
1 ... n )  ~~  A 
<->  E. n ( n  e.  NN0  /\  (
1 ... n )  ~~  A ) )
1311, 12sylibr 224 . 2  |-  ( A  e.  Fin  ->  E. n  e.  NN0  ( 1 ... n )  ~~  A
)
14 hasheni 13136 . . . . . . 7  |-  ( ( 1 ... n ) 
~~  A  ->  ( # `
 ( 1 ... n ) )  =  ( # `  A
) )
1514eqcomd 2628 . . . . . 6  |-  ( ( 1 ... n ) 
~~  A  ->  ( # `
 A )  =  ( # `  (
1 ... n ) ) )
16 hashfz1 13134 . . . . . 6  |-  ( n  e.  NN0  ->  ( # `  ( 1 ... n
) )  =  n )
17 ovex 6678 . . . . . . 7  |-  ( 1 ... ( # `  A
) )  e.  _V
18 eqtr 2641 . . . . . . 7  |-  ( ( ( # `  A
)  =  ( # `  ( 1 ... n
) )  /\  ( # `
 ( 1 ... n ) )  =  n )  ->  ( # `
 A )  =  n )
19 oveq2 6658 . . . . . . . 8  |-  ( (
# `  A )  =  n  ->  ( 1 ... ( # `  A
) )  =  ( 1 ... n ) )
20 eqeng 7989 . . . . . . . 8  |-  ( ( 1 ... ( # `  A ) )  e. 
_V  ->  ( ( 1 ... ( # `  A
) )  =  ( 1 ... n )  ->  ( 1 ... ( # `  A
) )  ~~  (
1 ... n ) ) )
2119, 20syl5 34 . . . . . . 7  |-  ( ( 1 ... ( # `  A ) )  e. 
_V  ->  ( ( # `  A )  =  n  ->  ( 1 ... ( # `  A
) )  ~~  (
1 ... n ) ) )
2217, 18, 21mpsyl 68 . . . . . 6  |-  ( ( ( # `  A
)  =  ( # `  ( 1 ... n
) )  /\  ( # `
 ( 1 ... n ) )  =  n )  ->  (
1 ... ( # `  A
) )  ~~  (
1 ... n ) )
2315, 16, 22syl2anr 495 . . . . 5  |-  ( ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )  ->  ( 1 ... ( # `
 A ) ) 
~~  ( 1 ... n ) )
24 entr 8008 . . . . 5  |-  ( ( ( 1 ... ( # `
 A ) ) 
~~  ( 1 ... n )  /\  (
1 ... n )  ~~  A )  ->  (
1 ... ( # `  A
) )  ~~  A
)
2523, 24sylancom 701 . . . 4  |-  ( ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )  ->  ( 1 ... ( # `
 A ) ) 
~~  A )
2625, 3sylibr 224 . . 3  |-  ( ( n  e.  NN0  /\  ( 1 ... n
)  ~~  A )  ->  A  e.  Fin )
2726rexlimiva 3028 . 2  |-  ( E. n  e.  NN0  (
1 ... n )  ~~  A  ->  A  e.  Fin )
2813, 27impbii 199 1  |-  ( A  e.  Fin  <->  E. n  e.  NN0  ( 1 ... n )  ~~  A
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   1c1 9937   NN0cn0 11292   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  rp-isfinite6  37864
  Copyright terms: Public domain W3C validator