Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-imass Structured version   Visualization version   Unicode version

Theorem rp-imass 38065
Description: If the  R-image of a class  A is a subclass of  B, then the restriction of  R to  A is a subset of the Cartesian product of  A and  B. (Contributed by Richard Penner, 24-Dec-2019.)
Assertion
Ref Expression
rp-imass  |-  ( ( R " A ) 
C_  B  <->  ( R  |`  A )  C_  ( A  X.  B ) )

Proof of Theorem rp-imass
StepHypRef Expression
1 df-ima 5127 . . 3  |-  ( R
" A )  =  ran  ( R  |`  A )
21sseq1i 3629 . 2  |-  ( ( R " A ) 
C_  B  <->  ran  ( R  |`  A )  C_  B
)
3 dmres 5419 . . . 4  |-  dom  ( R  |`  A )  =  ( A  i^i  dom  R )
4 inss1 3833 . . . 4  |-  ( A  i^i  dom  R )  C_  A
53, 4eqsstri 3635 . . 3  |-  dom  ( R  |`  A )  C_  A
65biantrur 527 . 2  |-  ( ran  ( R  |`  A ) 
C_  B  <->  ( dom  ( R  |`  A ) 
C_  A  /\  ran  ( R  |`  A ) 
C_  B ) )
7 relres 5426 . . . . 5  |-  Rel  ( R  |`  A )
8 relssdmrn 5656 . . . . 5  |-  ( Rel  ( R  |`  A )  ->  ( R  |`  A )  C_  ( dom  ( R  |`  A )  X.  ran  ( R  |`  A ) ) )
97, 8ax-mp 5 . . . 4  |-  ( R  |`  A )  C_  ( dom  ( R  |`  A )  X.  ran  ( R  |`  A ) )
10 xpss12 5225 . . . 4  |-  ( ( dom  ( R  |`  A )  C_  A  /\  ran  ( R  |`  A )  C_  B
)  ->  ( dom  ( R  |`  A )  X.  ran  ( R  |`  A ) )  C_  ( A  X.  B
) )
119, 10syl5ss 3614 . . 3  |-  ( ( dom  ( R  |`  A )  C_  A  /\  ran  ( R  |`  A )  C_  B
)  ->  ( R  |`  A )  C_  ( A  X.  B ) )
12 dmss 5323 . . . . 5  |-  ( ( R  |`  A )  C_  ( A  X.  B
)  ->  dom  ( R  |`  A )  C_  dom  ( A  X.  B
) )
13 dmxpss 5565 . . . . 5  |-  dom  ( A  X.  B )  C_  A
1412, 13syl6ss 3615 . . . 4  |-  ( ( R  |`  A )  C_  ( A  X.  B
)  ->  dom  ( R  |`  A )  C_  A
)
15 rnss 5354 . . . . 5  |-  ( ( R  |`  A )  C_  ( A  X.  B
)  ->  ran  ( R  |`  A )  C_  ran  ( A  X.  B
) )
16 rnxpss 5566 . . . . 5  |-  ran  ( A  X.  B )  C_  B
1715, 16syl6ss 3615 . . . 4  |-  ( ( R  |`  A )  C_  ( A  X.  B
)  ->  ran  ( R  |`  A )  C_  B
)
1814, 17jca 554 . . 3  |-  ( ( R  |`  A )  C_  ( A  X.  B
)  ->  ( dom  ( R  |`  A ) 
C_  A  /\  ran  ( R  |`  A ) 
C_  B ) )
1911, 18impbii 199 . 2  |-  ( ( dom  ( R  |`  A )  C_  A  /\  ran  ( R  |`  A )  C_  B
)  <->  ( R  |`  A )  C_  ( A  X.  B ) )
202, 6, 193bitri 286 1  |-  ( ( R " A ) 
C_  B  <->  ( R  |`  A )  C_  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    i^i cin 3573    C_ wss 3574    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  dfhe2  38068
  Copyright terms: Public domain W3C validator