MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruv Structured version   Visualization version   Unicode version

Theorem ruv 8507
Description: The Russell class is equal to the universe  _V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.)
Assertion
Ref Expression
ruv  |-  { x  |  x  e/  x }  =  _V

Proof of Theorem ruv
StepHypRef Expression
1 df-v 3202 . 2  |-  _V  =  { x  |  x  =  x }
2 equid 1939 . . . 4  |-  x  =  x
3 elirrv 8504 . . . . 5  |-  -.  x  e.  x
43nelir 2900 . . . 4  |-  x  e/  x
52, 42th 254 . . 3  |-  ( x  =  x  <->  x  e/  x )
65abbii 2739 . 2  |-  { x  |  x  =  x }  =  { x  |  x  e/  x }
71, 6eqtr2i 2645 1  |-  { x  |  x  e/  x }  =  _V
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   {cab 2608    e/ wnel 2897   _Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  ruALT  8508
  Copyright terms: Public domain W3C validator