| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruv | Structured version Visualization version Unicode version | ||
| Description: The Russell class is
equal to the universe |
| Ref | Expression |
|---|---|
| ruv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-v 3202 |
. 2
| |
| 2 | equid 1939 |
. . . 4
| |
| 3 | elirrv 8504 |
. . . . 5
| |
| 4 | 3 | nelir 2900 |
. . . 4
|
| 5 | 2, 4 | 2th 254 |
. . 3
|
| 6 | 5 | abbii 2739 |
. 2
|
| 7 | 1, 6 | eqtr2i 2645 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: ruALT 8508 |
| Copyright terms: Public domain | W3C validator |