MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albi Structured version   Visualization version   Unicode version

Theorem albi 1746
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
albi  |-  ( A. x ( ph  <->  ps )  ->  ( A. x ph  <->  A. x ps ) )

Proof of Theorem albi
StepHypRef Expression
1 biimp 205 . . 3  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
21al2imi 1743 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( A. x ph  ->  A. x ps )
)
3 biimpr 210 . . 3  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
43al2imi 1743 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( A. x ps 
->  A. x ph )
)
52, 4impbid 202 1  |-  ( A. x ( ph  <->  ps )  ->  ( A. x ph  <->  A. x ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197
This theorem is referenced by:  albii  1747  nfbiit  1777  albidh  1793  19.16  2093  19.17  2094  equvel  2347  eqeq1d  2624  intmin4  4506  dfiin2g  4553  bj-2albi  32597  bj-hbxfrbi  32608  wl-aleq  33322  2albi  38577  ralbidar  38649  sbcssOLD  38756  trsbcVD  39113  sbcssgVD  39119
  Copyright terms: Public domain W3C validator