MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbimi Structured version   Visualization version   Unicode version

Theorem sbimi 1886
Description: Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.)
Hypothesis
Ref Expression
sbimi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
sbimi  |-  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )

Proof of Theorem sbimi
StepHypRef Expression
1 sbimi.1 . . . 4  |-  ( ph  ->  ps )
21imim2i 16 . . 3  |-  ( ( x  =  y  ->  ph )  ->  ( x  =  y  ->  ps ) )
31anim2i 593 . . . 4  |-  ( ( x  =  y  /\  ph )  ->  ( x  =  y  /\  ps )
)
43eximi 1762 . . 3  |-  ( E. x ( x  =  y  /\  ph )  ->  E. x ( x  =  y  /\  ps ) )
52, 4anim12i 590 . 2  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  ->  ( (
x  =  y  ->  ps )  /\  E. x
( x  =  y  /\  ps ) ) )
6 df-sb 1881 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
7 df-sb 1881 . 2  |-  ( [ y  /  x ] ps 
<->  ( ( x  =  y  ->  ps )  /\  E. x ( x  =  y  /\  ps ) ) )
85, 6, 73imtr4i 281 1  |-  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   E.wex 1704   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881
This theorem is referenced by:  sbbii  1887  hbsb3  2364  sb6f  2385  sbi2  2393  sbie  2408  2mo  2551  fmptdF  29456  funcnv4mpt  29470  disjdsct  29480  measiuns  30280  ballotlemodife  30559  bj-hbsb3v  32761  bj-sbidmOLD  32831  mptsnunlem  33185
  Copyright terms: Public domain W3C validator