| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbthlem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for sbth 8080. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| Ref | Expression |
|---|---|
| sbthlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 |
. . . . . . . . 9
| |
| 2 | sbthlem.2 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sbthlem1 8070 |
. . . . . . . 8
|
| 4 | imass2 5501 |
. . . . . . . 8
| |
| 5 | sscon 3744 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | mp2b 10 |
. . . . . . 7
|
| 7 | imass2 5501 |
. . . . . . 7
| |
| 8 | sscon 3744 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | mp2b 10 |
. . . . . 6
|
| 10 | imassrn 5477 |
. . . . . . . 8
| |
| 11 | sstr2 3610 |
. . . . . . . 8
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . 7
|
| 13 | difss 3737 |
. . . . . . 7
| |
| 14 | ssconb 3743 |
. . . . . . 7
| |
| 15 | 12, 13, 14 | sylancl 694 |
. . . . . 6
|
| 16 | 9, 15 | mpbiri 248 |
. . . . 5
|
| 17 | 16, 13 | jctil 560 |
. . . 4
|
| 18 | 1, 13 | ssexi 4803 |
. . . . 5
|
| 19 | sseq1 3626 |
. . . . . 6
| |
| 20 | imaeq2 5462 |
. . . . . . . . 9
| |
| 21 | 20 | difeq2d 3728 |
. . . . . . . 8
|
| 22 | 21 | imaeq2d 5466 |
. . . . . . 7
|
| 23 | difeq2 3722 |
. . . . . . 7
| |
| 24 | 22, 23 | sseq12d 3634 |
. . . . . 6
|
| 25 | 19, 24 | anbi12d 747 |
. . . . 5
|
| 26 | 18, 25 | elab 3350 |
. . . 4
|
| 27 | 17, 26 | sylibr 224 |
. . 3
|
| 28 | 27, 2 | syl6eleqr 2712 |
. 2
|
| 29 | elssuni 4467 |
. 2
| |
| 30 | 28, 29 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
| This theorem is referenced by: sbthlem3 8072 |
| Copyright terms: Public domain | W3C validator |