| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec1lem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for setrec1 42438. If a family of sets are all recursively
generated
by |
| Ref | Expression |
|---|---|
| setrec1lem2.1 |
|
| setrec1lem2.2 |
|
| setrec1lem2.3 |
|
| Ref | Expression |
|---|---|
| setrec1lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setrec1lem2.3 |
. . . . . . 7
| |
| 2 | dfss3 3592 |
. . . . . . 7
| |
| 3 | 1, 2 | sylib 208 |
. . . . . 6
|
| 4 | setrec1lem2.1 |
. . . . . . . 8
| |
| 5 | vex 3203 |
. . . . . . . . 9
| |
| 6 | 5 | a1i 11 |
. . . . . . . 8
|
| 7 | 4, 6 | setrec1lem1 42434 |
. . . . . . 7
|
| 8 | 7 | ralbidv 2986 |
. . . . . 6
|
| 9 | 3, 8 | mpbid 222 |
. . . . 5
|
| 10 | ralcom4 3224 |
. . . . 5
| |
| 11 | 9, 10 | sylib 208 |
. . . 4
|
| 12 | nfra1 2941 |
. . . . . 6
| |
| 13 | nfv 1843 |
. . . . . 6
| |
| 14 | rsp 2929 |
. . . . . . . 8
| |
| 15 | elssuni 4467 |
. . . . . . . . . . . 12
| |
| 16 | sstr2 3610 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | syl5com 31 |
. . . . . . . . . . 11
|
| 18 | 17 | imim1d 82 |
. . . . . . . . . 10
|
| 19 | 18 | alimdv 1845 |
. . . . . . . . 9
|
| 20 | 19 | imim1d 82 |
. . . . . . . 8
|
| 21 | 14, 20 | sylcom 30 |
. . . . . . 7
|
| 22 | 21 | com23 86 |
. . . . . 6
|
| 23 | 12, 13, 22 | ralrimd 2959 |
. . . . 5
|
| 24 | 23 | alimi 1739 |
. . . 4
|
| 25 | 11, 24 | syl 17 |
. . 3
|
| 26 | unissb 4469 |
. . . . 5
| |
| 27 | 26 | imbi2i 326 |
. . . 4
|
| 28 | 27 | albii 1747 |
. . 3
|
| 29 | 25, 28 | sylibr 224 |
. 2
|
| 30 | setrec1lem2.2 |
. . . 4
| |
| 31 | uniexg 6955 |
. . . 4
| |
| 32 | 30, 31 | syl 17 |
. . 3
|
| 33 | 4, 32 | setrec1lem1 42434 |
. 2
|
| 34 | 29, 33 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 |
| This theorem is referenced by: setrec1lem3 42436 |
| Copyright terms: Public domain | W3C validator |