Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem1 Structured version   Visualization version   Unicode version

Theorem setrec1lem1 42434
Description: Lemma for setrec1 42438. This is a utility theorem showing the equivalence of the statement  X  e.  Y and its expanded form. The proof uses elabg 3351 and equivalence theorems.

Variable  Y is the class of sets  y that are recursively generated by the function  F. In other words,  y  e.  Y iff by starting with the empty set and repeatedly applying  F to subsets  w of our set, we will eventually generate all the elements of  Y. In this theorem,  X is any element of  Y, and  V is any class. (Contributed by Emmett Weisz, 16-Oct-2020.) (New usage is discouraged.)

Hypotheses
Ref Expression
setrec1lem1.1  |-  Y  =  { y  |  A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  y  C_  z ) }
setrec1lem1.2  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
setrec1lem1  |-  ( ph  ->  ( X  e.  Y  <->  A. z ( A. w
( w  C_  X  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  X  C_  z
) ) )
Distinct variable groups:    y, F    w, X, y    z, X, y
Allowed substitution hints:    ph( y, z, w)    F( z, w)    V( y, z, w)    Y( y,
z, w)

Proof of Theorem setrec1lem1
StepHypRef Expression
1 setrec1lem1.2 . 2  |-  ( ph  ->  X  e.  V )
2 sseq2 3627 . . . . . . 7  |-  ( y  =  X  ->  (
w  C_  y  <->  w  C_  X
) )
32imbi1d 331 . . . . . 6  |-  ( y  =  X  ->  (
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  <->  ( w  C_  X  ->  ( w  C_  z  ->  ( F `  w )  C_  z
) ) ) )
43albidv 1849 . . . . 5  |-  ( y  =  X  ->  ( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w )  C_  z
) )  <->  A. w
( w  C_  X  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
) ) )
5 sseq1 3626 . . . . 5  |-  ( y  =  X  ->  (
y  C_  z  <->  X  C_  z
) )
64, 5imbi12d 334 . . . 4  |-  ( y  =  X  ->  (
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
)  <->  ( A. w
( w  C_  X  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  X  C_  z
) ) )
76albidv 1849 . . 3  |-  ( y  =  X  ->  ( A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  y  C_  z )  <->  A. z
( A. w ( w  C_  X  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  X  C_  z
) ) )
8 setrec1lem1.1 . . 3  |-  Y  =  { y  |  A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  y  C_  z ) }
97, 8elab2g 3353 . 2  |-  ( X  e.  V  ->  ( X  e.  Y  <->  A. z
( A. w ( w  C_  X  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  X  C_  z
) ) )
101, 9syl 17 1  |-  ( ph  ->  ( X  e.  Y  <->  A. z ( A. w
( w  C_  X  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  X  C_  z
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608    C_ wss 3574   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588
This theorem is referenced by:  setrec1lem2  42435  setrec1lem4  42437  setrec2fun  42439
  Copyright terms: Public domain W3C validator