MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2rid2 Structured version   Visualization version   Unicode version

Theorem sgrp2rid2 17413
Description: A small semigroup (with two elements) with two right identities which are different if  A  =/=  B. (Contributed by AV, 10-Feb-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s  |-  S  =  { A ,  B }
mgm2nsgrp.b  |-  ( Base `  M )  =  S
sgrp2nmnd.o  |-  ( +g  `  M )  =  ( x  e.  S , 
y  e.  S  |->  if ( x  =  A ,  A ,  B
) )
sgrp2nmnd.p  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
sgrp2rid2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A. x  e.  S  A. y  e.  S  ( y  .o.  x
)  =  y )
Distinct variable groups:    x, S, y    x, A, y    x, B, y    x, M    x, V    x, W    x,  .o. , y
Allowed substitution hints:    M( y)    V( y)    W( y)

Proof of Theorem sgrp2rid2
StepHypRef Expression
1 prid1g 4295 . . . 4  |-  ( A  e.  V  ->  A  e.  { A ,  B } )
2 mgm2nsgrp.s . . . 4  |-  S  =  { A ,  B }
31, 2syl6eleqr 2712 . . 3  |-  ( A  e.  V  ->  A  e.  S )
4 prid2g 4296 . . . 4  |-  ( B  e.  W  ->  B  e.  { A ,  B } )
54, 2syl6eleqr 2712 . . 3  |-  ( B  e.  W  ->  B  e.  S )
6 simpl 473 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  S )  ->  A  e.  S )
7 mgm2nsgrp.b . . . . . 6  |-  ( Base `  M )  =  S
8 sgrp2nmnd.o . . . . . 6  |-  ( +g  `  M )  =  ( x  e.  S , 
y  e.  S  |->  if ( x  =  A ,  A ,  B
) )
9 sgrp2nmnd.p . . . . . 6  |-  .o.  =  ( +g  `  M )
102, 7, 8, 9sgrp2nmndlem2 17411 . . . . 5  |-  ( ( A  e.  S  /\  A  e.  S )  ->  ( A  .o.  A
)  =  A )
116, 10syldan 487 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  .o.  A
)  =  A )
12 oveq1 6657 . . . . . . 7  |-  ( A  =  B  ->  ( A  .o.  A )  =  ( B  .o.  A
) )
13 id 22 . . . . . . 7  |-  ( A  =  B  ->  A  =  B )
1412, 13eqeq12d 2637 . . . . . 6  |-  ( A  =  B  ->  (
( A  .o.  A
)  =  A  <->  ( B  .o.  A )  =  B ) )
1511, 14syl5ib 234 . . . . 5  |-  ( A  =  B  ->  (
( A  e.  S  /\  B  e.  S
)  ->  ( B  .o.  A )  =  B ) )
16 simprl 794 . . . . . . 7  |-  ( ( -.  A  =  B  /\  ( A  e.  S  /\  B  e.  S ) )  ->  A  e.  S )
17 simprr 796 . . . . . . 7  |-  ( ( -.  A  =  B  /\  ( A  e.  S  /\  B  e.  S ) )  ->  B  e.  S )
18 df-ne 2795 . . . . . . . . 9  |-  ( A  =/=  B  <->  -.  A  =  B )
1918biimpri 218 . . . . . . . 8  |-  ( -.  A  =  B  ->  A  =/=  B )
2019adantr 481 . . . . . . 7  |-  ( ( -.  A  =  B  /\  ( A  e.  S  /\  B  e.  S ) )  ->  A  =/=  B )
212, 7, 8, 9sgrp2nmndlem3 17412 . . . . . . 7  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( B  .o.  A
)  =  B )
2216, 17, 20, 21syl3anc 1326 . . . . . 6  |-  ( ( -.  A  =  B  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( B  .o.  A
)  =  B )
2322ex 450 . . . . 5  |-  ( -.  A  =  B  -> 
( ( A  e.  S  /\  B  e.  S )  ->  ( B  .o.  A )  =  B ) )
2415, 23pm2.61i 176 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( B  .o.  A
)  =  B )
252, 7, 8, 9sgrp2nmndlem2 17411 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  .o.  B
)  =  A )
2613, 13oveq12d 6668 . . . . . . . 8  |-  ( A  =  B  ->  ( A  .o.  A )  =  ( B  .o.  B
) )
2726, 13eqeq12d 2637 . . . . . . 7  |-  ( A  =  B  ->  (
( A  .o.  A
)  =  A  <->  ( B  .o.  B )  =  B ) )
2811, 27syl5ib 234 . . . . . 6  |-  ( A  =  B  ->  (
( A  e.  S  /\  B  e.  S
)  ->  ( B  .o.  B )  =  B ) )
292, 7, 8, 9sgrp2nmndlem3 17412 . . . . . . . 8  |-  ( ( B  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( B  .o.  B
)  =  B )
3017, 17, 20, 29syl3anc 1326 . . . . . . 7  |-  ( ( -.  A  =  B  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( B  .o.  B
)  =  B )
3130ex 450 . . . . . 6  |-  ( -.  A  =  B  -> 
( ( A  e.  S  /\  B  e.  S )  ->  ( B  .o.  B )  =  B ) )
3228, 31pm2.61i 176 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( B  .o.  B
)  =  B )
3325, 32jca 554 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( ( A  .o.  B )  =  A  /\  ( B  .o.  B )  =  B ) )
3411, 24, 33jca31 557 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( ( ( A  .o.  A )  =  A  /\  ( B  .o.  A )  =  B )  /\  (
( A  .o.  B
)  =  A  /\  ( B  .o.  B )  =  B ) ) )
353, 5, 34syl2an 494 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( ( A  .o.  A )  =  A  /\  ( B  .o.  A )  =  B )  /\  (
( A  .o.  B
)  =  A  /\  ( B  .o.  B )  =  B ) ) )
362raleqi 3142 . . . . 5  |-  ( A. y  e.  S  (
y  .o.  x )  =  y  <->  A. y  e.  { A ,  B } 
( y  .o.  x
)  =  y )
37 oveq1 6657 . . . . . . 7  |-  ( y  =  A  ->  (
y  .o.  x )  =  ( A  .o.  x ) )
38 id 22 . . . . . . 7  |-  ( y  =  A  ->  y  =  A )
3937, 38eqeq12d 2637 . . . . . 6  |-  ( y  =  A  ->  (
( y  .o.  x
)  =  y  <->  ( A  .o.  x )  =  A ) )
40 oveq1 6657 . . . . . . 7  |-  ( y  =  B  ->  (
y  .o.  x )  =  ( B  .o.  x ) )
41 id 22 . . . . . . 7  |-  ( y  =  B  ->  y  =  B )
4240, 41eqeq12d 2637 . . . . . 6  |-  ( y  =  B  ->  (
( y  .o.  x
)  =  y  <->  ( B  .o.  x )  =  B ) )
4339, 42ralprg 4234 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. y  e. 
{ A ,  B }  ( y  .o.  x )  =  y  <-> 
( ( A  .o.  x )  =  A  /\  ( B  .o.  x )  =  B ) ) )
4436, 43syl5bb 272 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. y  e.  S  ( y  .o.  x )  =  y  <-> 
( ( A  .o.  x )  =  A  /\  ( B  .o.  x )  =  B ) ) )
4544ralbidv 2986 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e.  S  A. y  e.  S  ( y  .o.  x )  =  y  <->  A. x  e.  S  ( ( A  .o.  x )  =  A  /\  ( B  .o.  x )  =  B ) ) )
462raleqi 3142 . . . 4  |-  ( A. x  e.  S  (
( A  .o.  x
)  =  A  /\  ( B  .o.  x
)  =  B )  <->  A. x  e.  { A ,  B }  ( ( A  .o.  x )  =  A  /\  ( B  .o.  x )  =  B ) )
47 oveq2 6658 . . . . . . 7  |-  ( x  =  A  ->  ( A  .o.  x )  =  ( A  .o.  A
) )
4847eqeq1d 2624 . . . . . 6  |-  ( x  =  A  ->  (
( A  .o.  x
)  =  A  <->  ( A  .o.  A )  =  A ) )
49 oveq2 6658 . . . . . . 7  |-  ( x  =  A  ->  ( B  .o.  x )  =  ( B  .o.  A
) )
5049eqeq1d 2624 . . . . . 6  |-  ( x  =  A  ->  (
( B  .o.  x
)  =  B  <->  ( B  .o.  A )  =  B ) )
5148, 50anbi12d 747 . . . . 5  |-  ( x  =  A  ->  (
( ( A  .o.  x )  =  A  /\  ( B  .o.  x )  =  B )  <->  ( ( A  .o.  A )  =  A  /\  ( B  .o.  A )  =  B ) ) )
52 oveq2 6658 . . . . . . 7  |-  ( x  =  B  ->  ( A  .o.  x )  =  ( A  .o.  B
) )
5352eqeq1d 2624 . . . . . 6  |-  ( x  =  B  ->  (
( A  .o.  x
)  =  A  <->  ( A  .o.  B )  =  A ) )
54 oveq2 6658 . . . . . . 7  |-  ( x  =  B  ->  ( B  .o.  x )  =  ( B  .o.  B
) )
5554eqeq1d 2624 . . . . . 6  |-  ( x  =  B  ->  (
( B  .o.  x
)  =  B  <->  ( B  .o.  B )  =  B ) )
5653, 55anbi12d 747 . . . . 5  |-  ( x  =  B  ->  (
( ( A  .o.  x )  =  A  /\  ( B  .o.  x )  =  B )  <->  ( ( A  .o.  B )  =  A  /\  ( B  .o.  B )  =  B ) ) )
5751, 56ralprg 4234 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e. 
{ A ,  B }  ( ( A  .o.  x )  =  A  /\  ( B  .o.  x )  =  B )  <->  ( (
( A  .o.  A
)  =  A  /\  ( B  .o.  A )  =  B )  /\  ( ( A  .o.  B )  =  A  /\  ( B  .o.  B )  =  B ) ) ) )
5846, 57syl5bb 272 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e.  S  ( ( A  .o.  x )  =  A  /\  ( B  .o.  x )  =  B )  <->  ( (
( A  .o.  A
)  =  A  /\  ( B  .o.  A )  =  B )  /\  ( ( A  .o.  B )  =  A  /\  ( B  .o.  B )  =  B ) ) ) )
5945, 58bitrd 268 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e.  S  A. y  e.  S  ( y  .o.  x )  =  y  <-> 
( ( ( A  .o.  A )  =  A  /\  ( B  .o.  A )  =  B )  /\  (
( A  .o.  B
)  =  A  /\  ( B  .o.  B )  =  B ) ) ) )
6035, 59mpbird 247 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A. x  e.  S  A. y  e.  S  ( y  .o.  x
)  =  y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   ifcif 4086   {cpr 4179   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   +g cplusg 15941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  sgrp2rid2ex  17414
  Copyright terms: Public domain W3C validator