| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgrp2rid2 | Structured version Visualization version Unicode version | ||
| Description: A small semigroup (with
two elements) with two right identities which
are different if |
| Ref | Expression |
|---|---|
| mgm2nsgrp.s |
|
| mgm2nsgrp.b |
|
| sgrp2nmnd.o |
|
| sgrp2nmnd.p |
|
| Ref | Expression |
|---|---|
| sgrp2rid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4295 |
. . . 4
| |
| 2 | mgm2nsgrp.s |
. . . 4
| |
| 3 | 1, 2 | syl6eleqr 2712 |
. . 3
|
| 4 | prid2g 4296 |
. . . 4
| |
| 5 | 4, 2 | syl6eleqr 2712 |
. . 3
|
| 6 | simpl 473 |
. . . . 5
| |
| 7 | mgm2nsgrp.b |
. . . . . 6
| |
| 8 | sgrp2nmnd.o |
. . . . . 6
| |
| 9 | sgrp2nmnd.p |
. . . . . 6
| |
| 10 | 2, 7, 8, 9 | sgrp2nmndlem2 17411 |
. . . . 5
|
| 11 | 6, 10 | syldan 487 |
. . . 4
|
| 12 | oveq1 6657 |
. . . . . . 7
| |
| 13 | id 22 |
. . . . . . 7
| |
| 14 | 12, 13 | eqeq12d 2637 |
. . . . . 6
|
| 15 | 11, 14 | syl5ib 234 |
. . . . 5
|
| 16 | simprl 794 |
. . . . . . 7
| |
| 17 | simprr 796 |
. . . . . . 7
| |
| 18 | df-ne 2795 |
. . . . . . . . 9
| |
| 19 | 18 | biimpri 218 |
. . . . . . . 8
|
| 20 | 19 | adantr 481 |
. . . . . . 7
|
| 21 | 2, 7, 8, 9 | sgrp2nmndlem3 17412 |
. . . . . . 7
|
| 22 | 16, 17, 20, 21 | syl3anc 1326 |
. . . . . 6
|
| 23 | 22 | ex 450 |
. . . . 5
|
| 24 | 15, 23 | pm2.61i 176 |
. . . 4
|
| 25 | 2, 7, 8, 9 | sgrp2nmndlem2 17411 |
. . . . 5
|
| 26 | 13, 13 | oveq12d 6668 |
. . . . . . . 8
|
| 27 | 26, 13 | eqeq12d 2637 |
. . . . . . 7
|
| 28 | 11, 27 | syl5ib 234 |
. . . . . 6
|
| 29 | 2, 7, 8, 9 | sgrp2nmndlem3 17412 |
. . . . . . . 8
|
| 30 | 17, 17, 20, 29 | syl3anc 1326 |
. . . . . . 7
|
| 31 | 30 | ex 450 |
. . . . . 6
|
| 32 | 28, 31 | pm2.61i 176 |
. . . . 5
|
| 33 | 25, 32 | jca 554 |
. . . 4
|
| 34 | 11, 24, 33 | jca31 557 |
. . 3
|
| 35 | 3, 5, 34 | syl2an 494 |
. 2
|
| 36 | 2 | raleqi 3142 |
. . . . 5
|
| 37 | oveq1 6657 |
. . . . . . 7
| |
| 38 | id 22 |
. . . . . . 7
| |
| 39 | 37, 38 | eqeq12d 2637 |
. . . . . 6
|
| 40 | oveq1 6657 |
. . . . . . 7
| |
| 41 | id 22 |
. . . . . . 7
| |
| 42 | 40, 41 | eqeq12d 2637 |
. . . . . 6
|
| 43 | 39, 42 | ralprg 4234 |
. . . . 5
|
| 44 | 36, 43 | syl5bb 272 |
. . . 4
|
| 45 | 44 | ralbidv 2986 |
. . 3
|
| 46 | 2 | raleqi 3142 |
. . . 4
|
| 47 | oveq2 6658 |
. . . . . . 7
| |
| 48 | 47 | eqeq1d 2624 |
. . . . . 6
|
| 49 | oveq2 6658 |
. . . . . . 7
| |
| 50 | 49 | eqeq1d 2624 |
. . . . . 6
|
| 51 | 48, 50 | anbi12d 747 |
. . . . 5
|
| 52 | oveq2 6658 |
. . . . . . 7
| |
| 53 | 52 | eqeq1d 2624 |
. . . . . 6
|
| 54 | oveq2 6658 |
. . . . . . 7
| |
| 55 | 54 | eqeq1d 2624 |
. . . . . 6
|
| 56 | 53, 55 | anbi12d 747 |
. . . . 5
|
| 57 | 51, 56 | ralprg 4234 |
. . . 4
|
| 58 | 46, 57 | syl5bb 272 |
. . 3
|
| 59 | 45, 58 | bitrd 268 |
. 2
|
| 60 | 35, 59 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: sgrp2rid2ex 17414 |
| Copyright terms: Public domain | W3C validator |