| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shle0 | Structured version Visualization version Unicode version | ||
| Description: No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shle0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sh0le 28299 |
. . 3
| |
| 2 | 1 | biantrud 528 |
. 2
|
| 3 | eqss 3618 |
. 2
| |
| 4 | 2, 3 | syl6bbr 278 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-hilex 27856 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-sh 28064 df-ch0 28110 |
| This theorem is referenced by: chle0 28302 shne0i 28307 shs00i 28309 cdj3lem1 29293 |
| Copyright terms: Public domain | W3C validator |