| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snexALT | Structured version Visualization version Unicode version | ||
| Description: Alternate proof of snex 4908 using Power Set (ax-pow 4843) instead of Pairing (ax-pr 4906). Unlike in the proof of zfpair 4904, Replacement (ax-rep 4771) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snexALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspw 4375 |
. . 3
| |
| 2 | ssexg 4804 |
. . 3
| |
| 3 | 1, 2 | mpan 706 |
. 2
|
| 4 | pwexg 4850 |
. . . 4
| |
| 5 | 4 | con3i 150 |
. . 3
|
| 6 | snprc 4253 |
. . . . 5
| |
| 7 | 6 | biimpi 206 |
. . . 4
|
| 8 | 0ex 4790 |
. . . 4
| |
| 9 | 7, 8 | syl6eqel 2709 |
. . 3
|
| 10 | 5, 9 | syl 17 |
. 2
|
| 11 | 3, 10 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 |
| This theorem is referenced by: p0exALT 4854 |
| Copyright terms: Public domain | W3C validator |