MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snexALT Structured version   Visualization version   Unicode version

Theorem snexALT 4852
Description: Alternate proof of snex 4908 using Power Set (ax-pow 4843) instead of Pairing (ax-pr 4906). Unlike in the proof of zfpair 4904, Replacement (ax-rep 4771) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snexALT  |-  { A }  e.  _V

Proof of Theorem snexALT
StepHypRef Expression
1 snsspw 4375 . . 3  |-  { A }  C_  ~P A
2 ssexg 4804 . . 3  |-  ( ( { A }  C_  ~P A  /\  ~P A  e.  _V )  ->  { A }  e.  _V )
31, 2mpan 706 . 2  |-  ( ~P A  e.  _V  ->  { A }  e.  _V )
4 pwexg 4850 . . . 4  |-  ( A  e.  _V  ->  ~P A  e.  _V )
54con3i 150 . . 3  |-  ( -. 
~P A  e.  _V  ->  -.  A  e.  _V )
6 snprc 4253 . . . . 5  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
76biimpi 206 . . . 4  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
8 0ex 4790 . . . 4  |-  (/)  e.  _V
97, 8syl6eqel 2709 . . 3  |-  ( -.  A  e.  _V  ->  { A }  e.  _V )
105, 9syl 17 . 2  |-  ( -. 
~P A  e.  _V  ->  { A }  e.  _V )
113, 10pm2.61i 176 1  |-  { A }  e.  _V
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178
This theorem is referenced by:  p0exALT  4854
  Copyright terms: Public domain W3C validator