MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgi Structured version   Visualization version   Unicode version

Theorem srgi 18511
Description: Properties of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgi.b  |-  B  =  ( Base `  R
)
srgi.p  |-  .+  =  ( +g  `  R )
srgi.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgi  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )

Proof of Theorem srgi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgi.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
2 eqid 2622 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 srgi.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  R )
4 srgi.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  R )
5 eqid 2622 . . . . . . . . . . 11  |-  ( 0g
`  R )  =  ( 0g `  R
)
61, 2, 3, 4, 5issrg 18507 . . . . . . . . . 10  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  /\  ( ( ( 0g `  R ) 
.x.  x )  =  ( 0g `  R
)  /\  ( x  .x.  ( 0g `  R
) )  =  ( 0g `  R ) ) ) ) )
76simp3bi 1078 . . . . . . . . 9  |-  ( R  e. SRing  ->  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  /\  ( ( ( 0g `  R ) 
.x.  x )  =  ( 0g `  R
)  /\  ( x  .x.  ( 0g `  R
) )  =  ( 0g `  R ) ) ) )
87r19.21bi 2932 . . . . . . . 8  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  /\  ( ( ( 0g `  R ) 
.x.  x )  =  ( 0g `  R
)  /\  ( x  .x.  ( 0g `  R
) )  =  ( 0g `  R ) ) ) )
98simpld 475 . . . . . . 7  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
1093ad2antr1 1226 . . . . . 6  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
11 simpr2 1068 . . . . . 6  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  y  e.  B )
12 rsp 2929 . . . . . 6  |-  ( A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  ->  ( y  e.  B  ->  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
1310, 11, 12sylc 65 . . . . 5  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
14 simpr3 1069 . . . . 5  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  z  e.  B )
15 rsp 2929 . . . . 5  |-  ( A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  ->  ( z  e.  B  ->  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
1613, 14, 15sylc 65 . . . 4  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
1716simpld 475 . . 3  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) ) )
1817caovdig 6848 . 2  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )
1916simprd 479 . . 3  |-  ( ( R  e. SRing  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) )
2019caovdirg 6851 . 2  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) )
2118, 20jca 554 1  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Mndcmnd 17294  CMndccmn 18193  mulGrpcmgp 18489  SRingcsrg 18505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-srg 18506
This theorem is referenced by:  srgdi  18516  srgdir  18517
  Copyright terms: Public domain W3C validator