![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnelpssd | Structured version Visualization version Unicode version |
Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 3718. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssnelpssd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ssnelpssd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ssnelpssd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssnelpssd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnelpssd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssnelpssd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ssnelpssd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | ssnelpss 3718 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | syl 17 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 5 | mp2and 715 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-ne 2795 df-pss 3590 |
This theorem is referenced by: isfin4-3 9137 canth4 9469 mrieqv2d 16299 symggen 17890 pgpfac1lem1 18473 pgpfaclem2 18481 |
Copyright terms: Public domain | W3C validator |