MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnelpssd Structured version   Visualization version   Unicode version

Theorem ssnelpssd 3719
Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 3718. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssnelpssd.1  |-  ( ph  ->  A  C_  B )
ssnelpssd.2  |-  ( ph  ->  C  e.  B )
ssnelpssd.3  |-  ( ph  ->  -.  C  e.  A
)
Assertion
Ref Expression
ssnelpssd  |-  ( ph  ->  A  C.  B )

Proof of Theorem ssnelpssd
StepHypRef Expression
1 ssnelpssd.2 . 2  |-  ( ph  ->  C  e.  B )
2 ssnelpssd.3 . 2  |-  ( ph  ->  -.  C  e.  A
)
3 ssnelpssd.1 . . 3  |-  ( ph  ->  A  C_  B )
4 ssnelpss 3718 . . 3  |-  ( A 
C_  B  ->  (
( C  e.  B  /\  -.  C  e.  A
)  ->  A  C.  B
) )
53, 4syl 17 . 2  |-  ( ph  ->  ( ( C  e.  B  /\  -.  C  e.  A )  ->  A  C.  B ) )
61, 2, 5mp2and 715 1  |-  ( ph  ->  A  C.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    e. wcel 1990    C_ wss 3574    C. wpss 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618  df-ne 2795  df-pss 3590
This theorem is referenced by:  isfin4-3  9137  canth4  9469  mrieqv2d  16299  symggen  17890  pgpfac1lem1  18473  pgpfaclem2  18481
  Copyright terms: Public domain W3C validator