| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssnelpssd | Structured version Visualization version Unicode version | ||
| Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 3718. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssnelpssd.1 |
|
| ssnelpssd.2 |
|
| ssnelpssd.3 |
|
| Ref | Expression |
|---|---|
| ssnelpssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssnelpssd.2 |
. 2
| |
| 2 | ssnelpssd.3 |
. 2
| |
| 3 | ssnelpssd.1 |
. . 3
| |
| 4 | ssnelpss 3718 |
. . 3
| |
| 5 | 3, 4 | syl 17 |
. 2
|
| 6 | 1, 2, 5 | mp2and 715 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-ne 2795 df-pss 3590 |
| This theorem is referenced by: isfin4-3 9137 canth4 9469 mrieqv2d 16299 symggen 17890 pgpfac1lem1 18473 pgpfaclem2 18481 |
| Copyright terms: Public domain | W3C validator |