| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canth4 | Structured version Visualization version Unicode version | ||
| Description: An "effective"
form of Cantor's theorem canth 6608. For any function
|
| Ref | Expression |
|---|---|
| canth4.1 |
|
| canth4.2 |
|
| canth4.3 |
|
| Ref | Expression |
|---|---|
| canth4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . . . . 8
| |
| 2 | eqid 2622 |
. . . . . . . 8
| |
| 3 | 1, 2 | pm3.2i 471 |
. . . . . . 7
|
| 4 | canth4.1 |
. . . . . . . 8
| |
| 5 | elex 3212 |
. . . . . . . . 9
| |
| 6 | 5 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 7 | simpl2 1065 |
. . . . . . . . 9
| |
| 8 | simp3 1063 |
. . . . . . . . . 10
| |
| 9 | 8 | sselda 3603 |
. . . . . . . . 9
|
| 10 | 7, 9 | ffvelrnd 6360 |
. . . . . . . 8
|
| 11 | canth4.2 |
. . . . . . . 8
| |
| 12 | 4, 6, 10, 11 | fpwwe 9468 |
. . . . . . 7
|
| 13 | 3, 12 | mpbiri 248 |
. . . . . 6
|
| 14 | 13 | simpld 475 |
. . . . 5
|
| 15 | 4, 6 | fpwwelem 9467 |
. . . . 5
|
| 16 | 14, 15 | mpbid 222 |
. . . 4
|
| 17 | 16 | simpld 475 |
. . 3
|
| 18 | 17 | simpld 475 |
. 2
|
| 19 | canth4.3 |
. . . . 5
| |
| 20 | cnvimass 5485 |
. . . . 5
| |
| 21 | 19, 20 | eqsstri 3635 |
. . . 4
|
| 22 | 17 | simprd 479 |
. . . . . 6
|
| 23 | dmss 5323 |
. . . . . 6
| |
| 24 | 22, 23 | syl 17 |
. . . . 5
|
| 25 | dmxpid 5345 |
. . . . 5
| |
| 26 | 24, 25 | syl6sseq 3651 |
. . . 4
|
| 27 | 21, 26 | syl5ss 3614 |
. . 3
|
| 28 | 13 | simprd 479 |
. . 3
|
| 29 | 16 | simprd 479 |
. . . . . . 7
|
| 30 | 29 | simpld 475 |
. . . . . 6
|
| 31 | weso 5105 |
. . . . . 6
| |
| 32 | 30, 31 | syl 17 |
. . . . 5
|
| 33 | sonr 5056 |
. . . . 5
| |
| 34 | 32, 28, 33 | syl2anc 693 |
. . . 4
|
| 35 | 19 | eleq2i 2693 |
. . . . 5
|
| 36 | fvex 6201 |
. . . . . 6
| |
| 37 | 36 | eliniseg 5494 |
. . . . . 6
|
| 38 | 36, 37 | ax-mp 5 |
. . . . 5
|
| 39 | 35, 38 | bitri 264 |
. . . 4
|
| 40 | 34, 39 | sylnibr 319 |
. . 3
|
| 41 | 27, 28, 40 | ssnelpssd 3719 |
. 2
|
| 42 | 29 | simprd 479 |
. . . 4
|
| 43 | sneq 4187 |
. . . . . . . . 9
| |
| 44 | 43 | imaeq2d 5466 |
. . . . . . . 8
|
| 45 | 44, 19 | syl6eqr 2674 |
. . . . . . 7
|
| 46 | 45 | fveq2d 6195 |
. . . . . 6
|
| 47 | id 22 |
. . . . . 6
| |
| 48 | 46, 47 | eqeq12d 2637 |
. . . . 5
|
| 49 | 48 | rspcv 3305 |
. . . 4
|
| 50 | 28, 42, 49 | sylc 65 |
. . 3
|
| 51 | 50 | eqcomd 2628 |
. 2
|
| 52 | 18, 41, 51 | 3jca 1242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-1st 7168 df-wrecs 7407 df-recs 7468 df-en 7956 df-oi 8415 df-card 8765 |
| This theorem is referenced by: canthnumlem 9470 canthp1lem2 9475 |
| Copyright terms: Public domain | W3C validator |