MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqv2d Structured version   Visualization version   Unicode version

Theorem mrieqv2d 16299
Description: In a Moore system, a set is independent if and only if all its proper subsets have closure properly contained in the closure of the set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mrieqvd.2  |-  N  =  (mrCls `  A )
mrieqvd.3  |-  I  =  (mrInd `  A )
mrieqvd.4  |-  ( ph  ->  S  C_  X )
Assertion
Ref Expression
mrieqv2d  |-  ( ph  ->  ( S  e.  I  <->  A. s ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) ) )
Distinct variable groups:    S, s    ph, s    I, s    N, s
Allowed substitution hints:    A( s)    X( s)

Proof of Theorem mrieqv2d
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pssnel 4039 . . . . . . 7  |-  ( s 
C.  S  ->  E. x
( x  e.  S  /\  -.  x  e.  s ) )
213ad2ant3 1084 . . . . . 6  |-  ( (
ph  /\  S  e.  I  /\  s  C.  S
)  ->  E. x
( x  e.  S  /\  -.  x  e.  s ) )
3 mrieqvd.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  (Moore `  X ) )
433ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  S  e.  I  /\  s  C.  S
)  ->  A  e.  (Moore `  X ) )
54adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  A  e.  (Moore `  X )
)
6 mrieqvd.2 . . . . . . . 8  |-  N  =  (mrCls `  A )
7 simprr 796 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  -.  x  e.  s )
8 difsnb 4337 . . . . . . . . . 10  |-  ( -.  x  e.  s  <->  ( s  \  { x } )  =  s )
97, 8sylib 208 . . . . . . . . 9  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  (
s  \  { x } )  =  s )
10 simpl3 1066 . . . . . . . . . . 11  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  s  C.  S )
1110pssssd 3704 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  s  C_  S )
1211ssdifd 3746 . . . . . . . . 9  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  (
s  \  { x } )  C_  ( S  \  { x }
) )
139, 12eqsstr3d 3640 . . . . . . . 8  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  s  C_  ( S  \  {
x } ) )
14 mrieqvd.3 . . . . . . . . . 10  |-  I  =  (mrInd `  A )
15 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  S  e.  I )
1614, 5, 15mrissd 16296 . . . . . . . . 9  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  S  C_  X )
1716ssdifssd 3748 . . . . . . . 8  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  ( S  \  { x }
)  C_  X )
185, 6, 13, 17mrcssd 16284 . . . . . . 7  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  ( N `  s )  C_  ( N `  ( S  \  { x }
) ) )
19 difssd 3738 . . . . . . . . 9  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  ( S  \  { x }
)  C_  S )
205, 6, 19, 16mrcssd 16284 . . . . . . . 8  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  ( N `  ( S  \  { x } ) )  C_  ( N `  S ) )
215, 6, 16mrcssidd 16285 . . . . . . . . 9  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  S  C_  ( N `  S
) )
22 simprl 794 . . . . . . . . 9  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  x  e.  S )
2321, 22sseldd 3604 . . . . . . . 8  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  x  e.  ( N `  S
) )
246, 14, 5, 15, 22ismri2dad 16297 . . . . . . . 8  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  -.  x  e.  ( N `  ( S  \  {
x } ) ) )
2520, 23, 24ssnelpssd 3719 . . . . . . 7  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  ( N `  ( S  \  { x } ) )  C.  ( N `  S ) )
2618, 25sspsstrd 3715 . . . . . 6  |-  ( ( ( ph  /\  S  e.  I  /\  s  C.  S )  /\  (
x  e.  S  /\  -.  x  e.  s
) )  ->  ( N `  s )  C.  ( N `  S
) )
272, 26exlimddv 1863 . . . . 5  |-  ( (
ph  /\  S  e.  I  /\  s  C.  S
)  ->  ( N `  s )  C.  ( N `  S )
)
28273expia 1267 . . . 4  |-  ( (
ph  /\  S  e.  I )  ->  (
s  C.  S  ->  ( N `  s ) 
C.  ( N `  S ) ) )
2928alrimiv 1855 . . 3  |-  ( (
ph  /\  S  e.  I )  ->  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) ) )
3029ex 450 . 2  |-  ( ph  ->  ( S  e.  I  ->  A. s ( s 
C.  S  ->  ( N `  s )  C.  ( N `  S
) ) ) )
313adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  (Moore `  X )
)
3231elfvexd 6222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  X  e.  _V )
33 mrieqvd.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  C_  X )
3433adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  S  C_  X )
3532, 34ssexd 4805 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  S )  ->  S  e.  _V )
36 difexg 4808 . . . . . . . . . . . 12  |-  ( S  e.  _V  ->  ( S  \  { x }
)  e.  _V )
3735, 36syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  ( S  \  { x }
)  e.  _V )
38 simp1r 1086 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  x  e.  S )
39 difsnpss 4338 . . . . . . . . . . . . . . . 16  |-  ( x  e.  S  <->  ( S  \  { x } ) 
C.  S )
4038, 39sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  ( S  \  { x }
)  C.  S )
41 simp2 1062 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  s  =  ( S  \  { x } ) )
4241psseq1d 3699 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  (
s  C.  S  <->  ( S  \  { x } ) 
C.  S ) )
4340, 42mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  s  C.  S )
44 simp3 1063 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  (
s  C.  S  ->  ( N `  s ) 
C.  ( N `  S ) ) )
4543, 44mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  ( N `  s )  C.  ( N `  S
) )
4641fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  ( N `  s )  =  ( N `  ( S  \  { x } ) ) )
4746psseq1d 3699 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  (
( N `  s
)  C.  ( N `  S )  <->  ( N `  ( S  \  {
x } ) ) 
C.  ( N `  S ) ) )
4845, 47mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } )  /\  ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) )  ->  ( N `  ( S  \  { x } ) )  C.  ( N `  S ) )
49483expia 1267 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  S )  /\  s  =  ( S  \  { x } ) )  ->  ( (
s  C.  S  ->  ( N `  s ) 
C.  ( N `  S ) )  -> 
( N `  ( S  \  { x }
) )  C.  ( N `  S )
) )
5037, 49spcimdv 3290 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  ( A. s ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
)  ->  ( N `  ( S  \  {
x } ) ) 
C.  ( N `  S ) ) )
51503impia 1261 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  S  /\  A. s ( s  C.  S  ->  ( N `  s ) 
C.  ( N `  S ) ) )  ->  ( N `  ( S  \  { x } ) )  C.  ( N `  S ) )
5251pssned 3705 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S  /\  A. s ( s  C.  S  ->  ( N `  s ) 
C.  ( N `  S ) ) )  ->  ( N `  ( S  \  { x } ) )  =/=  ( N `  S
) )
53523com23 1271 . . . . . . 7  |-  ( (
ph  /\  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) )  /\  x  e.  S )  ->  ( N `  ( S  \  { x }
) )  =/=  ( N `  S )
)
5433ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) )  /\  x  e.  S )  ->  A  e.  (Moore `  X ) )
55333ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) )  /\  x  e.  S )  ->  S  C_  X )
56 simp3 1063 . . . . . . . . 9  |-  ( (
ph  /\  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) )  /\  x  e.  S )  ->  x  e.  S )
5754, 6, 55, 56mrieqvlemd 16289 . . . . . . . 8  |-  ( (
ph  /\  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) )  /\  x  e.  S )  ->  ( x  e.  ( N `  ( S 
\  { x }
) )  <->  ( N `  ( S  \  {
x } ) )  =  ( N `  S ) ) )
5857necon3bbid 2831 . . . . . . 7  |-  ( (
ph  /\  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) )  /\  x  e.  S )  ->  ( -.  x  e.  ( N `  ( S  \  { x }
) )  <->  ( N `  ( S  \  {
x } ) )  =/=  ( N `  S ) ) )
5953, 58mpbird 247 . . . . . 6  |-  ( (
ph  /\  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) )  /\  x  e.  S )  ->  -.  x  e.  ( N `  ( S 
\  { x }
) ) )
60593expia 1267 . . . . 5  |-  ( (
ph  /\  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) ) )  ->  ( x  e.  S  ->  -.  x  e.  ( N `  ( S  \  { x }
) ) ) )
6160ralrimiv 2965 . . . 4  |-  ( (
ph  /\  A. s
( s  C.  S  ->  ( N `  s
)  C.  ( N `  S ) ) )  ->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x } ) ) )
6261ex 450 . . 3  |-  ( ph  ->  ( A. s ( s  C.  S  ->  ( N `  s ) 
C.  ( N `  S ) )  ->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x } ) ) ) )
636, 14, 3, 33ismri2d 16293 . . 3  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) )
6462, 63sylibrd 249 . 2  |-  ( ph  ->  ( A. s ( s  C.  S  ->  ( N `  s ) 
C.  ( N `  S ) )  ->  S  e.  I )
)
6530, 64impbid 202 1  |-  ( ph  ->  ( S  e.  I  <->  A. s ( s  C.  S  ->  ( N `  s )  C.  ( N `  S )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574    C. wpss 3575   {csn 4177   ` cfv 5888  Moorecmre 16242  mrClscmrc 16243  mrIndcmri 16244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247  df-mri 16248
This theorem is referenced by:  mrissmrcd  16300
  Copyright terms: Public domain W3C validator