MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnelpss Structured version   Visualization version   Unicode version

Theorem ssnelpss 3718
Description: A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
ssnelpss  |-  ( A 
C_  B  ->  (
( C  e.  B  /\  -.  C  e.  A
)  ->  A  C.  B
) )

Proof of Theorem ssnelpss
StepHypRef Expression
1 nelneq2 2726 . . 3  |-  ( ( C  e.  B  /\  -.  C  e.  A
)  ->  -.  B  =  A )
2 eqcom 2629 . . 3  |-  ( B  =  A  <->  A  =  B )
31, 2sylnib 318 . 2  |-  ( ( C  e.  B  /\  -.  C  e.  A
)  ->  -.  A  =  B )
4 dfpss2 3692 . . 3  |-  ( A 
C.  B  <->  ( A  C_  B  /\  -.  A  =  B ) )
54baibr 945 . 2  |-  ( A 
C_  B  ->  ( -.  A  =  B  <->  A 
C.  B ) )
63, 5syl5ib 234 1  |-  ( A 
C_  B  ->  (
( C  e.  B  /\  -.  C  e.  A
)  ->  A  C.  B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574    C. wpss 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618  df-ne 2795  df-pss 3590
This theorem is referenced by:  ssnelpssd  3719  ssexnelpss  3720  canthp1lem2  9475  nqpr  9836  uzindi  12781  nthruc  14981  nthruz  14982  vitali  23382  onpsstopbas  32429
  Copyright terms: Public domain W3C validator