| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssnelpss | Structured version Visualization version Unicode version | ||
| Description: A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| ssnelpss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq2 2726 |
. . 3
| |
| 2 | eqcom 2629 |
. . 3
| |
| 3 | 1, 2 | sylnib 318 |
. 2
|
| 4 | dfpss2 3692 |
. . 3
| |
| 5 | 4 | baibr 945 |
. 2
|
| 6 | 3, 5 | syl5ib 234 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-ne 2795 df-pss 3590 |
| This theorem is referenced by: ssnelpssd 3719 ssexnelpss 3720 canthp1lem2 9475 nqpr 9836 uzindi 12781 nthruc 14981 nthruz 14982 vitali 23382 onpsstopbas 32429 |
| Copyright terms: Public domain | W3C validator |