MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2 Structured version   Visualization version   Unicode version

Theorem ssopab2 5001
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.)
Assertion
Ref Expression
ssopab2  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )

Proof of Theorem ssopab2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
21anim2d 589 . . . . 5  |-  ( (
ph  ->  ps )  -> 
( ( z  = 
<. x ,  y >.  /\  ph )  ->  (
z  =  <. x ,  y >.  /\  ps ) ) )
32aleximi 1759 . . . 4  |-  ( A. y ( ph  ->  ps )  ->  ( E. y ( z  = 
<. x ,  y >.  /\  ph )  ->  E. y
( z  =  <. x ,  y >.  /\  ps ) ) )
43aleximi 1759 . . 3  |-  ( A. x A. y ( ph  ->  ps )  ->  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph )  ->  E. x E. y
( z  =  <. x ,  y >.  /\  ps ) ) )
54ss2abdv 3675 . 2  |-  ( A. x A. y ( ph  ->  ps )  ->  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  C_  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) } )
6 df-opab 4713 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
7 df-opab 4713 . 2  |-  { <. x ,  y >.  |  ps }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ps ) }
85, 6, 73sstr4g 3646 1  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704   {cab 2608    C_ wss 3574   <.cop 4183   {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-in 3581  df-ss 3588  df-opab 4713
This theorem is referenced by:  ssopab2b  5002  ssopab2i  5003  ssopab2dv  5004  opabbrex  6695
  Copyright terms: Public domain W3C validator