MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2dv Structured version   Visualization version   Unicode version

Theorem ssopab2dv 5004
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypothesis
Ref Expression
ssopab2dv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ssopab2dv  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  C_  {
<. x ,  y >.  |  ch } )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)

Proof of Theorem ssopab2dv
StepHypRef Expression
1 ssopab2dv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21alrimivv 1856 . 2  |-  ( ph  ->  A. x A. y
( ps  ->  ch ) )
3 ssopab2 5001 . 2  |-  ( A. x A. y ( ps 
->  ch )  ->  { <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ch } )
42, 3syl 17 1  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  C_  {
<. x ,  y >.  |  ch } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    C_ wss 3574   {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-in 3581  df-ss 3588  df-opab 4713
This theorem is referenced by:  xpss12  5225  coss1  5277  coss2  5278  cnvss  5294  cnvssOLD  5295  aceq3lem  8943  coss12d  13711  shftfval  13810  sslm  21103  ulmval  24134  mptssALT  29474  fpwrelmap  29508  dicssdvh  36475  rfovcnvf1od  38298
  Copyright terms: Public domain W3C validator