HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stcltr1i Structured version   Visualization version   Unicode version

Theorem stcltr1i 29133
Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stcltr1.1  |-  ( ph  <->  ( S  e.  States  /\  A. x  e.  CH  A. y  e.  CH  ( ( ( S `  x )  =  1  ->  ( S `  y )  =  1 )  ->  x  C_  y ) ) )
stcltr1.2  |-  A  e. 
CH
stcltr1.3  |-  B  e. 
CH
Assertion
Ref Expression
stcltr1i  |-  ( ph  ->  ( ( ( S `
 A )  =  1  ->  ( S `  B )  =  1 )  ->  A  C_  B
) )
Distinct variable groups:    x, y, A    x, B, y    x, S, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem stcltr1i
StepHypRef Expression
1 stcltr1.1 . 2  |-  ( ph  <->  ( S  e.  States  /\  A. x  e.  CH  A. y  e.  CH  ( ( ( S `  x )  =  1  ->  ( S `  y )  =  1 )  ->  x  C_  y ) ) )
2 stcltr1.2 . . 3  |-  A  e. 
CH
3 stcltr1.3 . . 3  |-  B  e. 
CH
4 fveq2 6191 . . . . . . 7  |-  ( x  =  A  ->  ( S `  x )  =  ( S `  A ) )
54eqeq1d 2624 . . . . . 6  |-  ( x  =  A  ->  (
( S `  x
)  =  1  <->  ( S `  A )  =  1 ) )
65imbi1d 331 . . . . 5  |-  ( x  =  A  ->  (
( ( S `  x )  =  1  ->  ( S `  y )  =  1 )  <->  ( ( S `
 A )  =  1  ->  ( S `  y )  =  1 ) ) )
7 sseq1 3626 . . . . 5  |-  ( x  =  A  ->  (
x  C_  y  <->  A  C_  y
) )
86, 7imbi12d 334 . . . 4  |-  ( x  =  A  ->  (
( ( ( S `
 x )  =  1  ->  ( S `  y )  =  1 )  ->  x  C_  y
)  <->  ( ( ( S `  A )  =  1  ->  ( S `  y )  =  1 )  ->  A  C_  y ) ) )
9 fveq2 6191 . . . . . . 7  |-  ( y  =  B  ->  ( S `  y )  =  ( S `  B ) )
109eqeq1d 2624 . . . . . 6  |-  ( y  =  B  ->  (
( S `  y
)  =  1  <->  ( S `  B )  =  1 ) )
1110imbi2d 330 . . . . 5  |-  ( y  =  B  ->  (
( ( S `  A )  =  1  ->  ( S `  y )  =  1 )  <->  ( ( S `
 A )  =  1  ->  ( S `  B )  =  1 ) ) )
12 sseq2 3627 . . . . 5  |-  ( y  =  B  ->  ( A  C_  y  <->  A  C_  B
) )
1311, 12imbi12d 334 . . . 4  |-  ( y  =  B  ->  (
( ( ( S `
 A )  =  1  ->  ( S `  y )  =  1 )  ->  A  C_  y
)  <->  ( ( ( S `  A )  =  1  ->  ( S `  B )  =  1 )  ->  A  C_  B ) ) )
148, 13rspc2v 3322 . . 3  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A. x  e. 
CH  A. y  e.  CH  ( ( ( S `
 x )  =  1  ->  ( S `  y )  =  1 )  ->  x  C_  y
)  ->  ( (
( S `  A
)  =  1  -> 
( S `  B
)  =  1 )  ->  A  C_  B
) ) )
152, 3, 14mp2an 708 . 2  |-  ( A. x  e.  CH  A. y  e.  CH  ( ( ( S `  x )  =  1  ->  ( S `  y )  =  1 )  ->  x  C_  y )  -> 
( ( ( S `
 A )  =  1  ->  ( S `  B )  =  1 )  ->  A  C_  B
) )
161, 15simplbiim 659 1  |-  ( ph  ->  ( ( ( S `
 A )  =  1  ->  ( S `  B )  =  1 )  ->  A  C_  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ` cfv 5888   1c1 9937   CHcch 27786   Statescst 27819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  stcltr2i  29134  stcltrlem2  29136
  Copyright terms: Public domain W3C validator