| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suctrALT | Structured version Visualization version Unicode version | ||
| Description: The successor of a transitive class is transitive. The proof of http://us.metamath.org/other/completeusersproof/suctrvd.html is a Virtual Deduction proof verified by automatically transforming it into the Metamath proof of suctrALT 39061 using completeusersproof, which is verified by the Metamath program. The proof of http://us.metamath.org/other/completeusersproof/suctrro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. See suctr 5808 for the original proof. (Contributed by Alan Sare, 11-Apr-2009.) (Revised by Alan Sare, 12-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| suctrALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid 5802 |
. . . . . . 7
| |
| 2 | id 22 |
. . . . . . . 8
| |
| 3 | id 22 |
. . . . . . . . 9
| |
| 4 | 3 | simpld 475 |
. . . . . . . 8
|
| 5 | id 22 |
. . . . . . . 8
| |
| 6 | trel 4759 |
. . . . . . . . . 10
| |
| 7 | 6 | 3impib 1262 |
. . . . . . . . 9
|
| 8 | 7 | idiALT 38683 |
. . . . . . . 8
|
| 9 | 2, 4, 5, 8 | syl3an 1368 |
. . . . . . 7
|
| 10 | 1, 9 | sseldi 3601 |
. . . . . 6
|
| 11 | 10 | 3expia 1267 |
. . . . 5
|
| 12 | 4 | adantr 481 |
. . . . . . . . 9
|
| 13 | id 22 |
. . . . . . . . . 10
| |
| 14 | 13 | adantl 482 |
. . . . . . . . 9
|
| 15 | 12, 14 | eleqtrd 2703 |
. . . . . . . 8
|
| 16 | 1, 15 | sseldi 3601 |
. . . . . . 7
|
| 17 | 16 | ex 450 |
. . . . . 6
|
| 18 | 17 | adantl 482 |
. . . . 5
|
| 19 | 3 | simprd 479 |
. . . . . . 7
|
| 20 | elsuci 5791 |
. . . . . . 7
| |
| 21 | 19, 20 | syl 17 |
. . . . . 6
|
| 22 | 21 | adantl 482 |
. . . . 5
|
| 23 | 11, 18, 22 | mpjaod 396 |
. . . 4
|
| 24 | 23 | ex 450 |
. . 3
|
| 25 | 24 | alrimivv 1856 |
. 2
|
| 26 | dftr2 4754 |
. . 3
| |
| 27 | 26 | biimpri 218 |
. 2
|
| 28 | 25, 27 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-uni 4437 df-tr 4753 df-suc 5729 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |