MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngd Structured version   Visualization version   Unicode version

Theorem isdrngd 18772
Description: Properties that determine a division ring.  I (reciprocal) is normally dependent on  x i.e. read it as  I ( x )." (Contributed by NM, 2-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isdrngd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isdrngd.z  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
isdrngd.u  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
isdrngd.r  |-  ( ph  ->  R  e.  Ring )
isdrngd.n  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( x  .x.  y )  =/=  .0.  )
isdrngd.o  |-  ( ph  ->  .1.  =/=  .0.  )
isdrngd.i  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  I  e.  B )
isdrngd.j  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  I  =/=  .0.  )
isdrngd.k  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  -> 
( I  .x.  x
)  =  .1.  )
Assertion
Ref Expression
isdrngd  |-  ( ph  ->  R  e.  DivRing )
Distinct variable groups:    x, y,  .0.    x,  .1. , y    x, B, y    y, I    x, R, y    ph, x, y   
x,  .x. , y
Allowed substitution hint:    I( x)

Proof of Theorem isdrngd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 isdrngd.r . . 3  |-  ( ph  ->  R  e.  Ring )
2 difss 3737 . . . . . 6  |-  ( B 
\  {  .0.  }
)  C_  B
3 isdrngd.b . . . . . 6  |-  ( ph  ->  B  =  ( Base `  R ) )
42, 3syl5sseq 3653 . . . . 5  |-  ( ph  ->  ( B  \  {  .0.  } )  C_  ( Base `  R ) )
5 eqid 2622 . . . . . 6  |-  ( (mulGrp `  R )s  ( B  \  {  .0.  } ) )  =  ( (mulGrp `  R )s  ( B  \  {  .0.  } ) )
6 eqid 2622 . . . . . . 7  |-  (mulGrp `  R )  =  (mulGrp `  R )
7 eqid 2622 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
86, 7mgpbas 18495 . . . . . 6  |-  ( Base `  R )  =  (
Base `  (mulGrp `  R
) )
95, 8ressbas2 15931 . . . . 5  |-  ( ( B  \  {  .0.  } )  C_  ( Base `  R )  ->  ( B  \  {  .0.  }
)  =  ( Base `  ( (mulGrp `  R
)s  ( B  \  {  .0.  } ) ) ) )
104, 9syl 17 . . . 4  |-  ( ph  ->  ( B  \  {  .0.  } )  =  (
Base `  ( (mulGrp `  R )s  ( B  \  {  .0.  } ) ) ) )
11 isdrngd.t . . . . 5  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
12 fvex 6201 . . . . . . 7  |-  ( Base `  R )  e.  _V
133, 12syl6eqel 2709 . . . . . 6  |-  ( ph  ->  B  e.  _V )
14 difexg 4808 . . . . . 6  |-  ( B  e.  _V  ->  ( B  \  {  .0.  }
)  e.  _V )
15 eqid 2622 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
166, 15mgpplusg 18493 . . . . . . 7  |-  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) )
175, 16ressplusg 15993 . . . . . 6  |-  ( ( B  \  {  .0.  } )  e.  _V  ->  ( .r `  R )  =  ( +g  `  (
(mulGrp `  R )s  ( B  \  {  .0.  }
) ) ) )
1813, 14, 173syl 18 . . . . 5  |-  ( ph  ->  ( .r `  R
)  =  ( +g  `  ( (mulGrp `  R
)s  ( B  \  {  .0.  } ) ) ) )
1911, 18eqtrd 2656 . . . 4  |-  ( ph  ->  .x.  =  ( +g  `  ( (mulGrp `  R
)s  ( B  \  {  .0.  } ) ) ) )
20 eldifsn 4317 . . . . 5  |-  ( x  e.  ( B  \  {  .0.  } )  <->  ( x  e.  B  /\  x  =/=  .0.  ) )
21 eldifsn 4317 . . . . . 6  |-  ( y  e.  ( B  \  {  .0.  } )  <->  ( y  e.  B  /\  y  =/=  .0.  ) )
227, 15ringcl 18561 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  R
) y )  e.  ( Base `  R
) )
231, 22syl3an1 1359 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( x ( .r `  R ) y )  e.  (
Base `  R )
)
24233expib 1268 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  R
) y )  e.  ( Base `  R
) ) )
253eleq2d 2687 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  R
) ) )
263eleq2d 2687 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  R
) ) )
2725, 26anbi12d 747 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  <->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) ) )
2811oveqd 6667 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  .x.  y
)  =  ( x ( .r `  R
) y ) )
2928, 3eleq12d 2695 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  .x.  y )  e.  B  <->  ( x ( .r `  R ) y )  e.  ( Base `  R
) ) )
3024, 27, 293imtr4d 283 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x  .x.  y )  e.  B ) )
31303impib 1262 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
32313adant2r 1321 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  y  e.  B )  ->  (
x  .x.  y )  e.  B )
33323adant3r 1323 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( x  .x.  y )  e.  B
)
34 isdrngd.n . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( x  .x.  y )  =/=  .0.  )
35 eldifsn 4317 . . . . . . 7  |-  ( ( x  .x.  y )  e.  ( B  \  {  .0.  } )  <->  ( (
x  .x.  y )  e.  B  /\  (
x  .x.  y )  =/=  .0.  ) )
3633, 34, 35sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( x  .x.  y )  e.  ( B  \  {  .0.  } ) )
3721, 36syl3an3b 1364 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x  .x.  y
)  e.  ( B 
\  {  .0.  }
) )
3820, 37syl3an2b 1363 . . . 4  |-  ( (
ph  /\  x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x  .x.  y
)  e.  ( B 
\  {  .0.  }
) )
39 eldifi 3732 . . . . . 6  |-  ( x  e.  ( B  \  {  .0.  } )  ->  x  e.  B )
40 eldifi 3732 . . . . . 6  |-  ( y  e.  ( B  \  {  .0.  } )  -> 
y  e.  B )
41 eldifi 3732 . . . . . 6  |-  ( z  e.  ( B  \  {  .0.  } )  -> 
z  e.  B )
4239, 40, 413anim123i 1247 . . . . 5  |-  ( ( x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } )  /\  z  e.  ( B  \  {  .0.  } ) )  -> 
( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )
437, 15ringass 18564 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  R ) y ) ( .r `  R ) z )  =  ( x ( .r `  R ) ( y ( .r
`  R ) z ) ) )
4443ex 450 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) z )  =  ( x ( .r
`  R ) ( y ( .r `  R ) z ) ) ) )
451, 44syl 17 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R ) )  ->  ( ( x ( .r `  R
) y ) ( .r `  R ) z )  =  ( x ( .r `  R ) ( y ( .r `  R
) z ) ) ) )
463eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( z  e.  B  <->  z  e.  ( Base `  R
) ) )
4725, 26, 463anbi123d 1399 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  <->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R ) ) ) )
48 eqidd 2623 . . . . . . . . 9  |-  ( ph  ->  z  =  z )
4911, 28, 48oveq123d 6671 . . . . . . . 8  |-  ( ph  ->  ( ( x  .x.  y )  .x.  z
)  =  ( ( x ( .r `  R ) y ) ( .r `  R
) z ) )
50 eqidd 2623 . . . . . . . . 9  |-  ( ph  ->  x  =  x )
5111oveqd 6667 . . . . . . . . 9  |-  ( ph  ->  ( y  .x.  z
)  =  ( y ( .r `  R
) z ) )
5211, 50, 51oveq123d 6671 . . . . . . . 8  |-  ( ph  ->  ( x  .x.  (
y  .x.  z )
)  =  ( x ( .r `  R
) ( y ( .r `  R ) z ) ) )
5349, 52eqeq12d 2637 . . . . . . 7  |-  ( ph  ->  ( ( ( x 
.x.  y )  .x.  z )  =  ( x  .x.  ( y 
.x.  z ) )  <-> 
( ( x ( .r `  R ) y ) ( .r
`  R ) z )  =  ( x ( .r `  R
) ( y ( .r `  R ) z ) ) ) )
5445, 47, 533imtr4d 283 . . . . . 6  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  (
( x  .x.  y
)  .x.  z )  =  ( x  .x.  ( y  .x.  z
) ) ) )
5554imp 445 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
5642, 55sylan2 491 . . . 4  |-  ( (
ph  /\  ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } )  /\  z  e.  ( B  \  {  .0.  } ) ) )  ->  ( ( x 
.x.  y )  .x.  z )  =  ( x  .x.  ( y 
.x.  z ) ) )
57 eqid 2622 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
587, 57ringidcl 18568 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
591, 58syl 17 . . . . . 6  |-  ( ph  ->  ( 1r `  R
)  e.  ( Base `  R ) )
60 isdrngd.u . . . . . 6  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
6159, 60, 33eltr4d 2716 . . . . 5  |-  ( ph  ->  .1.  e.  B )
62 isdrngd.o . . . . 5  |-  ( ph  ->  .1.  =/=  .0.  )
63 eldifsn 4317 . . . . 5  |-  (  .1. 
e.  ( B  \  {  .0.  } )  <->  (  .1.  e.  B  /\  .1.  =/=  .0.  ) )
6461, 62, 63sylanbrc 698 . . . 4  |-  ( ph  ->  .1.  e.  ( B 
\  {  .0.  }
) )
657, 15, 57ringlidm 18571 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) x )  =  x )
6665ex 450 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( x  e.  ( Base `  R
)  ->  ( ( 1r `  R ) ( .r `  R ) x )  =  x ) )
671, 66syl 17 . . . . . . . 8  |-  ( ph  ->  ( x  e.  (
Base `  R )  ->  ( ( 1r `  R ) ( .r
`  R ) x )  =  x ) )
6811, 60, 50oveq123d 6671 . . . . . . . . 9  |-  ( ph  ->  (  .1.  .x.  x
)  =  ( ( 1r `  R ) ( .r `  R
) x ) )
6968eqeq1d 2624 . . . . . . . 8  |-  ( ph  ->  ( (  .1.  .x.  x )  =  x  <-> 
( ( 1r `  R ) ( .r
`  R ) x )  =  x ) )
7067, 25, 693imtr4d 283 . . . . . . 7  |-  ( ph  ->  ( x  e.  B  ->  (  .1.  .x.  x
)  =  x ) )
7170imp 445 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
7271adantrr 753 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  -> 
(  .1.  .x.  x
)  =  x )
7320, 72sylan2b 492 . . . 4  |-  ( (
ph  /\  x  e.  ( B  \  {  .0.  } ) )  ->  (  .1.  .x.  x )  =  x )
74 isdrngd.i . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  I  e.  B )
75 isdrngd.j . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  I  =/=  .0.  )
76 eldifsn 4317 . . . . . 6  |-  ( I  e.  ( B  \  {  .0.  } )  <->  ( I  e.  B  /\  I  =/= 
.0.  ) )
7774, 75, 76sylanbrc 698 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  I  e.  ( B  \  {  .0.  } ) )
7820, 77sylan2b 492 . . . 4  |-  ( (
ph  /\  x  e.  ( B  \  {  .0.  } ) )  ->  I  e.  ( B  \  {  .0.  } ) )
79 isdrngd.k . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  -> 
( I  .x.  x
)  =  .1.  )
8020, 79sylan2b 492 . . . 4  |-  ( (
ph  /\  x  e.  ( B  \  {  .0.  } ) )  ->  (
I  .x.  x )  =  .1.  )
8110, 19, 38, 56, 64, 73, 78, 80isgrpd 17444 . . 3  |-  ( ph  ->  ( (mulGrp `  R
)s  ( B  \  {  .0.  } ) )  e. 
Grp )
82 isdrngd.z . . . . . . . 8  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
8382sneqd 4189 . . . . . . 7  |-  ( ph  ->  {  .0.  }  =  { ( 0g `  R ) } )
843, 83difeq12d 3729 . . . . . 6  |-  ( ph  ->  ( B  \  {  .0.  } )  =  ( ( Base `  R
)  \  { ( 0g `  R ) } ) )
8584oveq2d 6666 . . . . 5  |-  ( ph  ->  ( (mulGrp `  R
)s  ( B  \  {  .0.  } ) )  =  ( (mulGrp `  R
)s  ( ( Base `  R
)  \  { ( 0g `  R ) } ) ) )
8685eleq1d 2686 . . . 4  |-  ( ph  ->  ( ( (mulGrp `  R )s  ( B  \  {  .0.  } ) )  e.  Grp  <->  ( (mulGrp `  R )s  ( ( Base `  R )  \  {
( 0g `  R
) } ) )  e.  Grp ) )
8786anbi2d 740 . . 3  |-  ( ph  ->  ( ( R  e. 
Ring  /\  ( (mulGrp `  R )s  ( B  \  {  .0.  } ) )  e.  Grp )  <->  ( R  e.  Ring  /\  ( (mulGrp `  R )s  ( ( Base `  R )  \  {
( 0g `  R
) } ) )  e.  Grp ) ) )
881, 81, 87mpbi2and 956 . 2  |-  ( ph  ->  ( R  e.  Ring  /\  ( (mulGrp `  R
)s  ( ( Base `  R
)  \  { ( 0g `  R ) } ) )  e.  Grp ) )
89 eqid 2622 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
90 eqid 2622 . . 3  |-  ( (mulGrp `  R )s  ( ( Base `  R )  \  {
( 0g `  R
) } ) )  =  ( (mulGrp `  R )s  ( ( Base `  R )  \  {
( 0g `  R
) } ) )
917, 89, 90isdrng2 18757 . 2  |-  ( R  e.  DivRing 
<->  ( R  e.  Ring  /\  ( (mulGrp `  R
)s  ( ( Base `  R
)  \  { ( 0g `  R ) } ) )  e.  Grp ) )
9288, 91sylibr 224 1  |-  ( ph  ->  R  e.  DivRing )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547   DivRingcdr 18747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749
This theorem is referenced by:  isdrngrd  18773  cndrng  19775  erngdvlem4  36279
  Copyright terms: Public domain W3C validator