Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneqlem Structured version   Visualization version   Unicode version

Theorem dissneqlem 33187
Description: This is the core of the proof of dissneq 33188, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c  |-  C  =  { u  |  E. x  e.  A  u  =  { x } }
Assertion
Ref Expression
dissneqlem  |-  ( ( C  C_  B  /\  B  e.  (TopOn `  A
) )  ->  B  =  ~P A )
Distinct variable groups:    u, A, x    x, B    x, C
Allowed substitution hints:    B( u)    C( u)

Proof of Theorem dissneqlem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topgele 20734 . . . 4  |-  ( B  e.  (TopOn `  A
)  ->  ( { (/)
,  A }  C_  B  /\  B  C_  ~P A ) )
21adantl 482 . . 3  |-  ( ( C  C_  B  /\  B  e.  (TopOn `  A
) )  ->  ( { (/) ,  A }  C_  B  /\  B  C_  ~P A ) )
32simprd 479 . 2  |-  ( ( C  C_  B  /\  B  e.  (TopOn `  A
) )  ->  B  C_ 
~P A )
4 selpw 4165 . . . . . . 7  |-  ( x  e.  ~P A  <->  x  C_  A
)
5 simp3 1063 . . . . . . . . . 10  |-  ( ( C  C_  B  /\  x  C_  A  /\  B  e.  (TopOn `  A )
)  ->  B  e.  (TopOn `  A ) )
6 df-ima 5127 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  A  |->  { z } ) "
x )  =  ran  ( ( z  e.  A  |->  { z } )  |`  x )
7 resmpt 5449 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
C_  A  ->  (
( z  e.  A  |->  { z } )  |`  x )  =  ( z  e.  x  |->  { z } ) )
87rneqd 5353 . . . . . . . . . . . . . . . . . 18  |-  ( x 
C_  A  ->  ran  ( ( z  e.  A  |->  { z } )  |`  x )  =  ran  ( z  e.  x  |->  { z } ) )
96, 8syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( x 
C_  A  ->  (
( z  e.  A  |->  { z } )
" x )  =  ran  ( z  e.  x  |->  { z } ) )
10 rnmptsn 33182 . . . . . . . . . . . . . . . . 17  |-  ran  (
z  e.  x  |->  { z } )  =  { u  |  E. z  e.  x  u  =  { z } }
119, 10syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( x 
C_  A  ->  (
( z  e.  A  |->  { z } )
" x )  =  { u  |  E. z  e.  x  u  =  { z } }
)
12 imassrn 5477 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  A  |->  { z } ) "
x )  C_  ran  ( z  e.  A  |->  { z } )
1311, 12syl6eqssr 3656 . . . . . . . . . . . . . . 15  |-  ( x 
C_  A  ->  { u  |  E. z  e.  x  u  =  { z } }  C_  ran  (
z  e.  A  |->  { z } ) )
14 rnmptsn 33182 . . . . . . . . . . . . . . 15  |-  ran  (
z  e.  A  |->  { z } )  =  { u  |  E. z  e.  A  u  =  { z } }
1513, 14syl6sseq 3651 . . . . . . . . . . . . . 14  |-  ( x 
C_  A  ->  { u  |  E. z  e.  x  u  =  { z } }  C_  { u  |  E. z  e.  A  u  =  { z } } )
16 dissneq.c . . . . . . . . . . . . . . 15  |-  C  =  { u  |  E. x  e.  A  u  =  { x } }
17 sneq 4187 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  { x }  =  { z } )
1817eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
u  =  { x } 
<->  u  =  { z } ) )
1918cbvrexv 3172 . . . . . . . . . . . . . . . 16  |-  ( E. x  e.  A  u  =  { x }  <->  E. z  e.  A  u  =  { z } )
2019abbii 2739 . . . . . . . . . . . . . . 15  |-  { u  |  E. x  e.  A  u  =  { x } }  =  {
u  |  E. z  e.  A  u  =  { z } }
2116, 20eqtri 2644 . . . . . . . . . . . . . 14  |-  C  =  { u  |  E. z  e.  A  u  =  { z } }
2215, 21syl6sseqr 3652 . . . . . . . . . . . . 13  |-  ( x 
C_  A  ->  { u  |  E. z  e.  x  u  =  { z } }  C_  C )
2322adantl 482 . . . . . . . . . . . 12  |-  ( ( C  C_  B  /\  x  C_  A )  ->  { u  |  E. z  e.  x  u  =  { z } }  C_  C )
24 sstr 3611 . . . . . . . . . . . . . 14  |-  ( ( { u  |  E. z  e.  x  u  =  { z } }  C_  C  /\  C  C_  B )  ->  { u  |  E. z  e.  x  u  =  { z } }  C_  B )
2524expcom 451 . . . . . . . . . . . . 13  |-  ( C 
C_  B  ->  ( { u  |  E. z  e.  x  u  =  { z } }  C_  C  ->  { u  |  E. z  e.  x  u  =  { z } }  C_  B ) )
2625adantr 481 . . . . . . . . . . . 12  |-  ( ( C  C_  B  /\  x  C_  A )  -> 
( { u  |  E. z  e.  x  u  =  { z } }  C_  C  ->  { u  |  E. z  e.  x  u  =  { z } }  C_  B ) )
2723, 26mpd 15 . . . . . . . . . . 11  |-  ( ( C  C_  B  /\  x  C_  A )  ->  { u  |  E. z  e.  x  u  =  { z } }  C_  B )
28273adant3 1081 . . . . . . . . . 10  |-  ( ( C  C_  B  /\  x  C_  A  /\  B  e.  (TopOn `  A )
)  ->  { u  |  E. z  e.  x  u  =  { z } }  C_  B )
295, 28ssexd 4805 . . . . . . . . 9  |-  ( ( C  C_  B  /\  x  C_  A  /\  B  e.  (TopOn `  A )
)  ->  { u  |  E. z  e.  x  u  =  { z } }  e.  _V )
30 isset 3207 . . . . . . . . 9  |-  ( { u  |  E. z  e.  x  u  =  { z } }  e.  _V  <->  E. y  y  =  { u  |  E. z  e.  x  u  =  { z } }
)
3129, 30sylib 208 . . . . . . . 8  |-  ( ( C  C_  B  /\  x  C_  A  /\  B  e.  (TopOn `  A )
)  ->  E. y 
y  =  { u  |  E. z  e.  x  u  =  { z } } )
32 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( z  e.  A  |->  { z } )  =  ( z  e.  A  |->  { z } )
33 eqid 2622 . . . . . . . . . . . . . . 15  |-  { u  |  E. z  e.  A  u  =  { z } }  =  {
u  |  E. z  e.  A  u  =  { z } }
3432, 33mptsnun 33186 . . . . . . . . . . . . . 14  |-  ( x 
C_  A  ->  x  =  U. ( ( z  e.  A  |->  { z } ) " x
) )
3511unieqd 4446 . . . . . . . . . . . . . 14  |-  ( x 
C_  A  ->  U. (
( z  e.  A  |->  { z } )
" x )  = 
U. { u  |  E. z  e.  x  u  =  { z } } )
3634, 35eqtrd 2656 . . . . . . . . . . . . 13  |-  ( x 
C_  A  ->  x  =  U. { u  |  E. z  e.  x  u  =  { z } } )
3736adantl 482 . . . . . . . . . . . 12  |-  ( ( C  C_  B  /\  x  C_  A )  ->  x  =  U. { u  |  E. z  e.  x  u  =  { z } } )
3827, 37jca 554 . . . . . . . . . . 11  |-  ( ( C  C_  B  /\  x  C_  A )  -> 
( { u  |  E. z  e.  x  u  =  { z } }  C_  B  /\  x  =  U. { u  |  E. z  e.  x  u  =  { z } } ) )
39 sseq1 3626 . . . . . . . . . . . 12  |-  ( y  =  { u  |  E. z  e.  x  u  =  { z } }  ->  ( y 
C_  B  <->  { u  |  E. z  e.  x  u  =  { z } }  C_  B ) )
40 unieq 4444 . . . . . . . . . . . . 13  |-  ( y  =  { u  |  E. z  e.  x  u  =  { z } }  ->  U. y  =  U. { u  |  E. z  e.  x  u  =  { z } } )
4140eqeq2d 2632 . . . . . . . . . . . 12  |-  ( y  =  { u  |  E. z  e.  x  u  =  { z } }  ->  ( x  =  U. y  <->  x  =  U. { u  |  E. z  e.  x  u  =  { z } }
) )
4239, 41anbi12d 747 . . . . . . . . . . 11  |-  ( y  =  { u  |  E. z  e.  x  u  =  { z } }  ->  ( ( y  C_  B  /\  x  =  U. y
)  <->  ( { u  |  E. z  e.  x  u  =  { z } }  C_  B  /\  x  =  U. { u  |  E. z  e.  x  u  =  { z } } ) ) )
4338, 42syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( C  C_  B  /\  x  C_  A )  -> 
( y  =  {
u  |  E. z  e.  x  u  =  { z } }  ->  ( y  C_  B  /\  x  =  U. y ) ) )
4443eximdv 1846 . . . . . . . . 9  |-  ( ( C  C_  B  /\  x  C_  A )  -> 
( E. y  y  =  { u  |  E. z  e.  x  u  =  { z } }  ->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
45443adant3 1081 . . . . . . . 8  |-  ( ( C  C_  B  /\  x  C_  A  /\  B  e.  (TopOn `  A )
)  ->  ( E. y  y  =  {
u  |  E. z  e.  x  u  =  { z } }  ->  E. y ( y 
C_  B  /\  x  =  U. y ) ) )
4631, 45mpd 15 . . . . . . 7  |-  ( ( C  C_  B  /\  x  C_  A  /\  B  e.  (TopOn `  A )
)  ->  E. y
( y  C_  B  /\  x  =  U. y ) )
474, 46syl3an2b 1363 . . . . . 6  |-  ( ( C  C_  B  /\  x  e.  ~P A  /\  B  e.  (TopOn `  A ) )  ->  E. y ( y  C_  B  /\  x  =  U. y ) )
48473com23 1271 . . . . 5  |-  ( ( C  C_  B  /\  B  e.  (TopOn `  A
)  /\  x  e.  ~P A )  ->  E. y
( y  C_  B  /\  x  =  U. y ) )
49483expia 1267 . . . 4  |-  ( ( C  C_  B  /\  B  e.  (TopOn `  A
) )  ->  (
x  e.  ~P A  ->  E. y ( y 
C_  B  /\  x  =  U. y ) ) )
50 topontop 20718 . . . . . . . 8  |-  ( B  e.  (TopOn `  A
)  ->  B  e.  Top )
51 tgtop 20777 . . . . . . . 8  |-  ( B  e.  Top  ->  ( topGen `
 B )  =  B )
5250, 51syl 17 . . . . . . 7  |-  ( B  e.  (TopOn `  A
)  ->  ( topGen `  B )  =  B )
5352eleq2d 2687 . . . . . 6  |-  ( B  e.  (TopOn `  A
)  ->  ( x  e.  ( topGen `  B )  <->  x  e.  B ) )
54 eltg3 20766 . . . . . 6  |-  ( B  e.  (TopOn `  A
)  ->  ( x  e.  ( topGen `  B )  <->  E. y ( y  C_  B  /\  x  =  U. y ) ) )
5553, 54bitr3d 270 . . . . 5  |-  ( B  e.  (TopOn `  A
)  ->  ( x  e.  B  <->  E. y ( y 
C_  B  /\  x  =  U. y ) ) )
5655adantl 482 . . . 4  |-  ( ( C  C_  B  /\  B  e.  (TopOn `  A
) )  ->  (
x  e.  B  <->  E. y
( y  C_  B  /\  x  =  U. y ) ) )
5749, 56sylibrd 249 . . 3  |-  ( ( C  C_  B  /\  B  e.  (TopOn `  A
) )  ->  (
x  e.  ~P A  ->  x  e.  B ) )
5857ssrdv 3609 . 2  |-  ( ( C  C_  B  /\  B  e.  (TopOn `  A
) )  ->  ~P A  C_  B )
593, 58eqssd 3620 1  |-  ( ( C  C_  B  /\  B  e.  (TopOn `  A
) )  ->  B  =  ~P A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   U.cuni 4436    |-> cmpt 4729   ran crn 5115    |` cres 5116   "cima 5117   ` cfv 5888   topGenctg 16098   Topctop 20698  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104  df-top 20699  df-topon 20716
This theorem is referenced by:  dissneq  33188
  Copyright terms: Public domain W3C validator