Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredeq2 Structured version   Visualization version   Unicode version

Theorem trpredeq2 31721
Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
trpredeq2  |-  ( A  =  B  ->  TrPred ( R ,  A ,  X
)  =  TrPred ( R ,  B ,  X
) )

Proof of Theorem trpredeq2
Dummy variables  a 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 predeq2 5683 . . . . . . 7  |-  ( A  =  B  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  B , 
y ) )
21iuneq2d 4547 . . . . . 6  |-  ( A  =  B  ->  U_ y  e.  a  Pred ( R ,  A ,  y )  =  U_ y  e.  a  Pred ( R ,  B ,  y ) )
32mpteq2dv 4745 . . . . 5  |-  ( A  =  B  ->  (
a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )  =  ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  B , 
y ) ) )
4 predeq2 5683 . . . . 5  |-  ( A  =  B  ->  Pred ( R ,  A ,  X )  =  Pred ( R ,  B ,  X ) )
5 rdgeq12 7509 . . . . . 6  |-  ( ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )  =  ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  B , 
y ) )  /\  Pred ( R ,  A ,  X )  =  Pred ( R ,  B ,  X ) )  ->  rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  B ,  y ) ) ,  Pred ( R ,  B ,  X ) ) )
65reseq1d 5395 . . . . 5  |-  ( ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )  =  ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  B , 
y ) )  /\  Pred ( R ,  A ,  X )  =  Pred ( R ,  B ,  X ) )  -> 
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )  =  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  B , 
y ) ) , 
Pred ( R ,  B ,  X )
)  |`  om ) )
73, 4, 6syl2anc 693 . . . 4  |-  ( A  =  B  ->  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  B ,  y )
) ,  Pred ( R ,  B ,  X ) )  |`  om ) )
87rneqd 5353 . . 3  |-  ( A  =  B  ->  ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  B ,  y ) ) ,  Pred ( R ,  B ,  X ) )  |`  om ) )
98unieqd 4446 . 2  |-  ( A  =  B  ->  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  B , 
y ) ) , 
Pred ( R ,  B ,  X )
)  |`  om ) )
10 df-trpred 31718 . 2  |-  TrPred ( R ,  A ,  X
)  =  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )
11 df-trpred 31718 . 2  |-  TrPred ( R ,  B ,  X
)  =  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  B ,  y ) ) ,  Pred ( R ,  B ,  X ) )  |`  om )
129, 10, 113eqtr4g 2681 1  |-  ( A  =  B  ->  TrPred ( R ,  A ,  X
)  =  TrPred ( R ,  B ,  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   _Vcvv 3200   U.cuni 4436   U_ciun 4520    |-> cmpt 4729   ran crn 5115    |` cres 5116   Predcpred 5679   omcom 7065   reccrdg 7505   TrPredctrpred 31717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fv 5896  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-trpred 31718
This theorem is referenced by:  trpredeq2d  31724
  Copyright terms: Public domain W3C validator