MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsktrss Structured version   Visualization version   Unicode version

Theorem tsktrss 9583
Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsktrss  |-  ( ( T  e.  Tarski  /\  Tr  A  /\  A  e.  T
)  ->  A  C_  T
)

Proof of Theorem tsktrss
StepHypRef Expression
1 simp2 1062 . . 3  |-  ( ( T  e.  Tarski  /\  Tr  A  /\  A  e.  T
)  ->  Tr  A
)
2 dftr4 4757 . . 3  |-  ( Tr  A  <->  A  C_  ~P A
)
31, 2sylib 208 . 2  |-  ( ( T  e.  Tarski  /\  Tr  A  /\  A  e.  T
)  ->  A  C_  ~P A )
4 tskpwss 9574 . . 3  |-  ( ( T  e.  Tarski  /\  A  e.  T )  ->  ~P A  C_  T )
543adant2 1080 . 2  |-  ( ( T  e.  Tarski  /\  Tr  A  /\  A  e.  T
)  ->  ~P A  C_  T )
63, 5sstrd 3613 1  |-  ( ( T  e.  Tarski  /\  Tr  A  /\  A  e.  T
)  ->  A  C_  T
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   Tr wtr 4752   Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-tr 4753  df-tsk 9571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator