MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrushgr Structured version   Visualization version   Unicode version

Theorem uspgrushgr 26070
Description: A simple pseudograph is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 15-Oct-2020.)
Assertion
Ref Expression
uspgrushgr  |-  ( G  e. USPGraph  ->  G  e. USHGraph  )

Proof of Theorem uspgrushgr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2622 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  G )
31, 2isuspgr 26047 . . . 4  |-  ( G  e. USPGraph  ->  ( G  e. USPGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
4 ssrab2 3687 . . . . 5  |-  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 }  C_  ( ~P (Vtx `  G )  \  { (/) } )
5 f1ss 6106 . . . . 5  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ( ~P (Vtx `  G
)  \  { (/) } )  |  ( # `  x
)  <_  2 }  /\  { x  e.  ( ~P (Vtx `  G
)  \  { (/) } )  |  ( # `  x
)  <_  2 }  C_  ( ~P (Vtx `  G )  \  { (/)
} ) )  -> 
(iEdg `  G ) : dom  (iEdg `  G
) -1-1-> ( ~P (Vtx `  G )  \  { (/)
} ) )
64, 5mpan2 707 . . . 4  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> ( ~P (Vtx `  G )  \  { (/)
} ) )
73, 6syl6bi 243 . . 3  |-  ( G  e. USPGraph  ->  ( G  e. USPGraph  ->  (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> ( ~P (Vtx `  G )  \  { (/)
} ) ) )
81, 2isushgr 25956 . . 3  |-  ( G  e. USPGraph  ->  ( G  e. USHGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> ( ~P (Vtx `  G
)  \  { (/) } ) ) )
97, 8sylibrd 249 . 2  |-  ( G  e. USPGraph  ->  ( G  e. USPGraph  ->  G  e. USHGraph  ) )
109pm2.43i 52 1  |-  ( G  e. USPGraph  ->  G  e. USHGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   dom cdm 5114   -1-1->wf1 5885   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   USHGraph cushgr 25952   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-ushgr 25954  df-uspgr 26045
This theorem is referenced by:  uspgrupgrushgr  26072  usgredgedg  26122  vtxdusgrfvedg  26387  1loopgrvd2  26399
  Copyright terms: Public domain W3C validator