Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuceq123 Structured version   Visualization version   Unicode version

Theorem wsuceq123 31760
Description: Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Assertion
Ref Expression
wsuceq123  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  -> wsuc ( R ,  A ,  X )  = wsuc ( S ,  B ,  Y ) )

Proof of Theorem wsuceq123
StepHypRef Expression
1 simp1 1061 . . . . 5  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  R  =  S )
21cnveqd 5298 . . . 4  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  `' R  =  `' S )
3 predeq123 5681 . . . 4  |-  ( ( `' R  =  `' S  /\  A  =  B  /\  X  =  Y )  ->  Pred ( `' R ,  A ,  X )  =  Pred ( `' S ,  B ,  Y ) )
42, 3syld3an1 1372 . . 3  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  Pred ( `' R ,  A ,  X )  =  Pred ( `' S ,  B ,  Y ) )
5 simp2 1062 . . 3  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  A  =  B )
64, 5, 1infeq123d 8387 . 2  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  -> inf ( Pred ( `' R ,  A ,  X ) ,  A ,  R )  = inf ( Pred ( `' S ,  B ,  Y ) ,  B ,  S ) )
7 df-wsuc 31756 . 2  |- wsuc ( R ,  A ,  X
)  = inf ( Pred ( `' R ,  A ,  X ) ,  A ,  R )
8 df-wsuc 31756 . 2  |- wsuc ( S ,  B ,  Y
)  = inf ( Pred ( `' S ,  B ,  Y ) ,  B ,  S )
96, 7, 83eqtr4g 2681 1  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  -> wsuc ( R ,  A ,  X )  = wsuc ( S ,  B ,  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483   `'ccnv 5113   Predcpred 5679  infcinf 8347  wsuccwsuc 31752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-sup 8348  df-inf 8349  df-wsuc 31756
This theorem is referenced by:  wsuceq1  31761  wsuceq2  31762  wsuceq3  31763
  Copyright terms: Public domain W3C validator