MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq123 Structured version   Visualization version   Unicode version

Theorem predeq123 5681
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
predeq123  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  Pred ( R ,  A ,  X )  =  Pred ( S ,  B ,  Y )
)

Proof of Theorem predeq123
StepHypRef Expression
1 simp2 1062 . . 3  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  A  =  B )
2 cnveq 5296 . . . . 5  |-  ( R  =  S  ->  `' R  =  `' S
)
323ad2ant1 1082 . . . 4  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  `' R  =  `' S )
4 sneq 4187 . . . . 5  |-  ( X  =  Y  ->  { X }  =  { Y } )
543ad2ant3 1084 . . . 4  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  { X }  =  { Y } )
63, 5imaeq12d 5467 . . 3  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  ( `' R " { X } )  =  ( `' S " { Y } ) )
71, 6ineq12d 3815 . 2  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  ( A  i^i  ( `' R " { X } ) )  =  ( B  i^i  ( `' S " { Y } ) ) )
8 df-pred 5680 . 2  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  ( `' R " { X } ) )
9 df-pred 5680 . 2  |-  Pred ( S ,  B ,  Y )  =  ( B  i^i  ( `' S " { Y } ) )
107, 8, 93eqtr4g 2681 1  |-  ( ( R  =  S  /\  A  =  B  /\  X  =  Y )  ->  Pred ( R ,  A ,  X )  =  Pred ( S ,  B ,  Y )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    i^i cin 3573   {csn 4177   `'ccnv 5113   "cima 5117   Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680
This theorem is referenced by:  predeq1  5682  predeq2  5683  predeq3  5684  wsuceq123  31760  wlimeq12  31765
  Copyright terms: Public domain W3C validator