MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunelss Structured version   Visualization version   Unicode version

Theorem wunelss 9530
Description: The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1  |-  ( ph  ->  U  e. WUni )
wununi.2  |-  ( ph  ->  A  e.  U )
Assertion
Ref Expression
wunelss  |-  ( ph  ->  A  C_  U )

Proof of Theorem wunelss
StepHypRef Expression
1 wununi.1 . . 3  |-  ( ph  ->  U  e. WUni )
2 wuntr 9527 . . 3  |-  ( U  e. WUni  ->  Tr  U )
31, 2syl 17 . 2  |-  ( ph  ->  Tr  U )
4 wununi.2 . 2  |-  ( ph  ->  A  e.  U )
5 trss 4761 . 2  |-  ( Tr  U  ->  ( A  e.  U  ->  A  C_  U ) )
63, 4, 5sylc 65 1  |-  ( ph  ->  A  C_  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    C_ wss 3574   Tr wtr 4752  WUnicwun 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-uni 4437  df-tr 4753  df-wun 9524
This theorem is referenced by:  wunss  9534  wunf  9549  wuncval2  9569
  Copyright terms: Public domain W3C validator