MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncval2 Structured version   Visualization version   Unicode version

Theorem wuncval2 9569
Description: Our earlier expression for a containing weak universe is in fact the weak universe closure. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wuncval2.f  |-  F  =  ( rec ( ( z  e.  _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )
wuncval2.u  |-  U  = 
U. ran  F
Assertion
Ref Expression
wuncval2  |-  ( A  e.  V  ->  (wUniCl `  A )  =  U )
Distinct variable groups:    x, y,
z    x, A, y    x, V, y
Allowed substitution hints:    A( z)    U( x, y, z)    F( x, y, z)    V( z)

Proof of Theorem wuncval2
Dummy variables  v  u  w  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wuncval2.f . . . 4  |-  F  =  ( rec ( ( z  e.  _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )
2 wuncval2.u . . . 4  |-  U  = 
U. ran  F
31, 2wunex2 9560 . . 3  |-  ( A  e.  V  ->  ( U  e. WUni  /\  A  C_  U ) )
4 wuncss 9567 . . 3  |-  ( ( U  e. WUni  /\  A  C_  U )  ->  (wUniCl `  A )  C_  U
)
53, 4syl 17 . 2  |-  ( A  e.  V  ->  (wUniCl `  A )  C_  U
)
6 frfnom 7530 . . . . . 6  |-  ( rec ( ( z  e. 
_V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )  Fn  om
71fneq1i 5985 . . . . . 6  |-  ( F  Fn  om  <->  ( rec ( ( z  e. 
_V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )  Fn  om )
86, 7mpbir 221 . . . . 5  |-  F  Fn  om
9 fniunfv 6505 . . . . 5  |-  ( F  Fn  om  ->  U_ m  e.  om  ( F `  m )  =  U. ran  F )
108, 9ax-mp 5 . . . 4  |-  U_ m  e.  om  ( F `  m )  =  U. ran  F
112, 10eqtr4i 2647 . . 3  |-  U  = 
U_ m  e.  om  ( F `  m )
12 fveq2 6191 . . . . . . . 8  |-  ( m  =  (/)  ->  ( F `
 m )  =  ( F `  (/) ) )
1312sseq1d 3632 . . . . . . 7  |-  ( m  =  (/)  ->  ( ( F `  m ) 
C_  (wUniCl `  A )  <->  ( F `  (/) )  C_  (wUniCl `  A ) ) )
14 fveq2 6191 . . . . . . . 8  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
1514sseq1d 3632 . . . . . . 7  |-  ( m  =  n  ->  (
( F `  m
)  C_  (wUniCl `  A
)  <->  ( F `  n )  C_  (wUniCl `  A ) ) )
16 fveq2 6191 . . . . . . . 8  |-  ( m  =  suc  n  -> 
( F `  m
)  =  ( F `
 suc  n )
)
1716sseq1d 3632 . . . . . . 7  |-  ( m  =  suc  n  -> 
( ( F `  m )  C_  (wUniCl `  A )  <->  ( F `  suc  n )  C_  (wUniCl `  A ) ) )
18 1on 7567 . . . . . . . . . 10  |-  1o  e.  On
19 unexg 6959 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  1o  e.  On )  -> 
( A  u.  1o )  e.  _V )
2018, 19mpan2 707 . . . . . . . . 9  |-  ( A  e.  V  ->  ( A  u.  1o )  e.  _V )
211fveq1i 6192 . . . . . . . . . 10  |-  ( F `
 (/) )  =  ( ( rec ( ( z  e.  _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om ) `  (/) )
22 fr0g 7531 . . . . . . . . . 10  |-  ( ( A  u.  1o )  e.  _V  ->  (
( rec ( ( z  e.  _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om ) `  (/) )  =  ( A  u.  1o ) )
2321, 22syl5eq 2668 . . . . . . . . 9  |-  ( ( A  u.  1o )  e.  _V  ->  ( F `  (/) )  =  ( A  u.  1o ) )
2420, 23syl 17 . . . . . . . 8  |-  ( A  e.  V  ->  ( F `  (/) )  =  ( A  u.  1o ) )
25 wuncid 9565 . . . . . . . . 9  |-  ( A  e.  V  ->  A  C_  (wUniCl `  A )
)
26 df1o2 7572 . . . . . . . . . 10  |-  1o  =  { (/) }
27 wunccl 9566 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  (wUniCl `  A )  e. WUni )
2827wun0 9540 . . . . . . . . . . 11  |-  ( A  e.  V  ->  (/)  e.  (wUniCl `  A ) )
2928snssd 4340 . . . . . . . . . 10  |-  ( A  e.  V  ->  { (/) } 
C_  (wUniCl `  A )
)
3026, 29syl5eqss 3649 . . . . . . . . 9  |-  ( A  e.  V  ->  1o  C_  (wUniCl `  A )
)
3125, 30unssd 3789 . . . . . . . 8  |-  ( A  e.  V  ->  ( A  u.  1o )  C_  (wUniCl `  A )
)
3224, 31eqsstrd 3639 . . . . . . 7  |-  ( A  e.  V  ->  ( F `  (/) )  C_  (wUniCl `  A ) )
33 simplr 792 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  ->  n  e.  om )
34 fvex 6201 . . . . . . . . . . . . 13  |-  ( F `
 n )  e. 
_V
3534uniex 6953 . . . . . . . . . . . . 13  |-  U. ( F `  n )  e.  _V
3634, 35unex 6956 . . . . . . . . . . . 12  |-  ( ( F `  n )  u.  U. ( F `
 n ) )  e.  _V
37 prex 4909 . . . . . . . . . . . . . 14  |-  { ~P u ,  U. u }  e.  _V
3834mptex 6486 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( F `  n )  |->  { u ,  v } )  e.  _V
3938rnex 7100 . . . . . . . . . . . . . 14  |-  ran  (
v  e.  ( F `
 n )  |->  { u ,  v } )  e.  _V
4037, 39unex 6956 . . . . . . . . . . . . 13  |-  ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n ) 
|->  { u ,  v } ) )  e. 
_V
4134, 40iunex 7147 . . . . . . . . . . . 12  |-  U_ u  e.  ( F `  n
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n )  |->  { u ,  v } ) )  e.  _V
4236, 41unex 6956 . . . . . . . . . . 11  |-  ( ( ( F `  n
)  u.  U. ( F `  n )
)  u.  U_ u  e.  ( F `  n
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n )  |->  { u ,  v } ) ) )  e.  _V
43 id 22 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  w  =  z )
44 unieq 4444 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  U. w  =  U. z )
4543, 44uneq12d 3768 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
w  u.  U. w
)  =  ( z  u.  U. z ) )
46 pweq 4161 . . . . . . . . . . . . . . . . 17  |-  ( u  =  x  ->  ~P u  =  ~P x
)
47 unieq 4444 . . . . . . . . . . . . . . . . 17  |-  ( u  =  x  ->  U. u  =  U. x )
4846, 47preq12d 4276 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  { ~P u ,  U. u }  =  { ~P x ,  U. x } )
49 preq1 4268 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  x  ->  { u ,  v }  =  { x ,  v } )
5049mpteq2dv 4745 . . . . . . . . . . . . . . . . 17  |-  ( u  =  x  ->  (
v  e.  w  |->  { u ,  v } )  =  ( v  e.  w  |->  { x ,  v } ) )
5150rneqd 5353 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  ran  ( v  e.  w  |->  { u ,  v } )  =  ran  ( v  e.  w  |->  { x ,  v } ) )
5248, 51uneq12d 3768 . . . . . . . . . . . . . . 15  |-  ( u  =  x  ->  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  ( { ~P x ,  U. x }  u.  ran  ( v  e.  w  |->  { x ,  v } ) ) )
5352cbviunv 4559 . . . . . . . . . . . . . 14  |-  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  U_ x  e.  w  ( { ~P x ,  U. x }  u.  ran  ( v  e.  w  |->  { x ,  v } ) )
54 preq2 4269 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  y  ->  { x ,  v }  =  { x ,  y } )
5554cbvmptv 4750 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  w  |->  { x ,  v } )  =  ( y  e.  w  |->  { x ,  y } )
56 mpteq1 4737 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  z  ->  (
y  e.  w  |->  { x ,  y } )  =  ( y  e.  z  |->  { x ,  y } ) )
5755, 56syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( w  =  z  ->  (
v  e.  w  |->  { x ,  v } )  =  ( y  e.  z  |->  { x ,  y } ) )
5857rneqd 5353 . . . . . . . . . . . . . . . 16  |-  ( w  =  z  ->  ran  ( v  e.  w  |->  { x ,  v } )  =  ran  ( y  e.  z 
|->  { x ,  y } ) )
5958uneq2d 3767 . . . . . . . . . . . . . . 15  |-  ( w  =  z  ->  ( { ~P x ,  U. x }  u.  ran  ( v  e.  w  |->  { x ,  v } ) )  =  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z 
|->  { x ,  y } ) ) )
6043, 59iuneq12d 4546 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  U_ x  e.  w  ( { ~P x ,  U. x }  u.  ran  ( v  e.  w  |->  { x ,  v } ) )  =  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) )
6153, 60syl5eq 2668 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) )
6245, 61uneq12d 3768 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
( w  u.  U. w )  u.  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) ) )  =  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) )
63 id 22 . . . . . . . . . . . . . 14  |-  ( w  =  ( F `  n )  ->  w  =  ( F `  n ) )
64 unieq 4444 . . . . . . . . . . . . . 14  |-  ( w  =  ( F `  n )  ->  U. w  =  U. ( F `  n ) )
6563, 64uneq12d 3768 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  n )  ->  (
w  u.  U. w
)  =  ( ( F `  n )  u.  U. ( F `
 n ) ) )
66 mpteq1 4737 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( F `  n )  ->  (
v  e.  w  |->  { u ,  v } )  =  ( v  e.  ( F `  n )  |->  { u ,  v } ) )
6766rneqd 5353 . . . . . . . . . . . . . . 15  |-  ( w  =  ( F `  n )  ->  ran  ( v  e.  w  |->  { u ,  v } )  =  ran  ( v  e.  ( F `  n ) 
|->  { u ,  v } ) )
6867uneq2d 3767 . . . . . . . . . . . . . 14  |-  ( w  =  ( F `  n )  ->  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n ) 
|->  { u ,  v } ) ) )
6963, 68iuneq12d 4546 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  n )  ->  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) )  =  U_ u  e.  ( F `  n
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n )  |->  { u ,  v } ) ) )
7065, 69uneq12d 3768 . . . . . . . . . . . 12  |-  ( w  =  ( F `  n )  ->  (
( w  u.  U. w )  u.  U_ u  e.  w  ( { ~P u ,  U. u }  u.  ran  ( v  e.  w  |->  { u ,  v } ) ) )  =  ( ( ( F `  n )  u.  U. ( F `
 n ) )  u.  U_ u  e.  ( F `  n
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n )  |->  { u ,  v } ) ) ) )
711, 62, 70frsucmpt2 7535 . . . . . . . . . . 11  |-  ( ( n  e.  om  /\  ( ( ( F `
 n )  u. 
U. ( F `  n ) )  u. 
U_ u  e.  ( F `  n ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n ) 
|->  { u ,  v } ) ) )  e.  _V )  -> 
( F `  suc  n )  =  ( ( ( F `  n )  u.  U. ( F `  n ) )  u.  U_ u  e.  ( F `  n
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n )  |->  { u ,  v } ) ) ) )
7233, 42, 71sylancl 694 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  -> 
( F `  suc  n )  =  ( ( ( F `  n )  u.  U. ( F `  n ) )  u.  U_ u  e.  ( F `  n
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n )  |->  { u ,  v } ) ) ) )
73 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  -> 
( F `  n
)  C_  (wUniCl `  A
) )
7427ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  (wUniCl `  A
)  e. WUni )
7573sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  u  e.  (wUniCl `  A ) )
7674, 75wunelss 9530 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  u  C_  (wUniCl `  A ) )
7776ralrimiva 2966 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  ->  A. u  e.  ( F `  n )
u  C_  (wUniCl `  A
) )
78 unissb 4469 . . . . . . . . . . . . 13  |-  ( U. ( F `  n ) 
C_  (wUniCl `  A )  <->  A. u  e.  ( F `
 n ) u 
C_  (wUniCl `  A )
)
7977, 78sylibr 224 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  ->  U. ( F `  n
)  C_  (wUniCl `  A
) )
8073, 79unssd 3789 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  -> 
( ( F `  n )  u.  U. ( F `  n ) )  C_  (wUniCl `  A
) )
8174, 75wunpw 9529 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  ~P u  e.  (wUniCl `  A )
)
8274, 75wununi 9528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  U. u  e.  (wUniCl `  A )
)
83 prssi 4353 . . . . . . . . . . . . . . 15  |-  ( ( ~P u  e.  (wUniCl `  A )  /\  U. u  e.  (wUniCl `  A
) )  ->  { ~P u ,  U. u }  C_  (wUniCl `  A
) )
8481, 82, 83syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  { ~P u ,  U. u }  C_  (wUniCl `  A
) )
8574adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  /\  v  e.  ( F `  n
) )  ->  (wUniCl `  A )  e. WUni )
8675adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  /\  v  e.  ( F `  n
) )  ->  u  e.  (wUniCl `  A )
)
87 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  ( F `  n )  C_  (wUniCl `  A ) )
8887sselda 3603 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  /\  v  e.  ( F `  n
) )  ->  v  e.  (wUniCl `  A )
)
8985, 86, 88wunpr 9531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  /\  v  e.  ( F `  n
) )  ->  { u ,  v }  e.  (wUniCl `  A ) )
90 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ( F `  n )  |->  { u ,  v } )  =  ( v  e.  ( F `  n
)  |->  { u ,  v } )
9189, 90fmptd 6385 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  ( v  e.  ( F `  n
)  |->  { u ,  v } ) : ( F `  n
) --> (wUniCl `  A )
)
92 frn 6053 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  ( F `
 n )  |->  { u ,  v } ) : ( F `
 n ) --> (wUniCl `  A )  ->  ran  ( v  e.  ( F `  n ) 
|->  { u ,  v } )  C_  (wUniCl `  A ) )
9391, 92syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  ran  ( v  e.  ( F `  n )  |->  { u ,  v } ) 
C_  (wUniCl `  A )
)
9484, 93unssd 3789 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  n  e. 
om )  /\  ( F `  n )  C_  (wUniCl `  A )
)  /\  u  e.  ( F `  n ) )  ->  ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n )  |->  { u ,  v } ) )  C_  (wUniCl `  A
) )
9594ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  ->  A. u  e.  ( F `  n )
( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n ) 
|->  { u ,  v } ) )  C_  (wUniCl `  A ) )
96 iunss 4561 . . . . . . . . . . . 12  |-  ( U_ u  e.  ( F `  n ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n ) 
|->  { u ,  v } ) )  C_  (wUniCl `  A )  <->  A. u  e.  ( F `  n
) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n )  |->  { u ,  v } ) )  C_  (wUniCl `  A
) )
9795, 96sylibr 224 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  ->  U_ u  e.  ( F `  n )
( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n ) 
|->  { u ,  v } ) )  C_  (wUniCl `  A ) )
9880, 97unssd 3789 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  -> 
( ( ( F `
 n )  u. 
U. ( F `  n ) )  u. 
U_ u  e.  ( F `  n ) ( { ~P u ,  U. u }  u.  ran  ( v  e.  ( F `  n ) 
|->  { u ,  v } ) ) ) 
C_  (wUniCl `  A )
)
9972, 98eqsstrd 3639 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  n  e.  om )  /\  ( F `  n )  C_  (wUniCl `  A ) )  -> 
( F `  suc  n )  C_  (wUniCl `  A ) )
10099ex 450 . . . . . . . 8  |-  ( ( A  e.  V  /\  n  e.  om )  ->  ( ( F `  n )  C_  (wUniCl `  A )  ->  ( F `  suc  n ) 
C_  (wUniCl `  A )
) )
101100expcom 451 . . . . . . 7  |-  ( n  e.  om  ->  ( A  e.  V  ->  ( ( F `  n
)  C_  (wUniCl `  A
)  ->  ( F `  suc  n )  C_  (wUniCl `  A ) ) ) )
10213, 15, 17, 32, 101finds2 7094 . . . . . 6  |-  ( m  e.  om  ->  ( A  e.  V  ->  ( F `  m ) 
C_  (wUniCl `  A )
) )
103102com12 32 . . . . 5  |-  ( A  e.  V  ->  (
m  e.  om  ->  ( F `  m ) 
C_  (wUniCl `  A )
) )
104103ralrimiv 2965 . . . 4  |-  ( A  e.  V  ->  A. m  e.  om  ( F `  m )  C_  (wUniCl `  A ) )
105 iunss 4561 . . . 4  |-  ( U_ m  e.  om  ( F `  m )  C_  (wUniCl `  A )  <->  A. m  e.  om  ( F `  m )  C_  (wUniCl `  A )
)
106104, 105sylibr 224 . . 3  |-  ( A  e.  V  ->  U_ m  e.  om  ( F `  m )  C_  (wUniCl `  A ) )
10711, 106syl5eqss 3649 . 2  |-  ( A  e.  V  ->  U  C_  (wUniCl `  A )
)
1085, 107eqssd 3620 1  |-  ( A  e.  V  ->  (wUniCl `  A )  =  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   U.cuni 4436   U_ciun 4520    |-> cmpt 4729   ran crn 5115    |` cres 5116   Oncon0 5723   suc csuc 5725    Fn wfn 5883   -->wf 5884   ` cfv 5888   omcom 7065   reccrdg 7505   1oc1o 7553  WUnicwun 9522  wUniClcwunm 9523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-wun 9524  df-wunc 9525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator