MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0nnn0pnf Structured version   Visualization version   Unicode version

Theorem xnn0nnn0pnf 11376
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nnn0pnf  |-  ( ( N  e. NN0*  /\  -.  N  e.  NN0 )  ->  N  = +oo )

Proof of Theorem xnn0nnn0pnf
StepHypRef Expression
1 elxnn0 11365 . . 3  |-  ( N  e. NN0* 
<->  ( N  e.  NN0  \/  N  = +oo )
)
2 pm2.53 388 . . 3  |-  ( ( N  e.  NN0  \/  N  = +oo )  ->  ( -.  N  e. 
NN0  ->  N  = +oo ) )
31, 2sylbi 207 . 2  |-  ( N  e. NN0*  ->  ( -.  N  e.  NN0  ->  N  = +oo ) )
43imp 445 1  |-  ( ( N  e. NN0*  /\  -.  N  e.  NN0 )  ->  N  = +oo )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   +oocpnf 10071   NN0cn0 11292  NN0*cxnn0 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-pow 4843  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-pnf 10076  df-xr 10078  df-xnn0 11364
This theorem is referenced by:  xnn0xaddcl  12066
  Copyright terms: Public domain W3C validator