MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasfi Structured version   Visualization version   GIF version

Theorem ptbasfi 21384
Description: The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add 𝑋 itself to the list because if 𝐴 is empty we get (fi‘∅) = ∅ while 𝐵 = {∅}.) (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
ptbasfi.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
Assertion
Ref Expression
ptbasfi ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
Distinct variable groups:   𝑘,𝑛,𝑢,𝐵   𝑤,𝑔,𝑥,𝑦,𝑛,𝑘,𝑢,𝑧,𝐴   𝑔,𝐹,𝑘,𝑛,𝑢,𝑤,𝑥,𝑦,𝑧   𝑔,𝑋,𝑘,𝑢,𝑤,𝑥,𝑧   𝑔,𝑉,𝑘,𝑛,𝑢,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔)   𝑋(𝑦,𝑛)

Proof of Theorem ptbasfi
Dummy variables 𝑠 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . . 5 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21elpt 21375 . . . 4 (𝑠𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)))
3 df-3an 1039 . . . . . . . 8 (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)))
4 simprr 796 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))
5 disjdif2 4047 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) = ∅ → (𝐴𝑚) = 𝐴)
65raleqdv 3144 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) = ∅ → (∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ↔ ∀𝑦𝐴 (𝑦) = (𝐹𝑦)))
76biimpac 503 . . . . . . . . . . . . . . . 16 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → ∀𝑦𝐴 (𝑦) = (𝐹𝑦))
8 ixpeq2 7922 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦) = (𝐹𝑦) → X𝑦𝐴 (𝑦) = X𝑦𝐴 (𝐹𝑦))
97, 8syl 17 . . . . . . . . . . . . . . 15 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = X𝑦𝐴 (𝐹𝑦))
10 ptbasfi.2 . . . . . . . . . . . . . . . 16 𝑋 = X𝑛𝐴 (𝐹𝑛)
11 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑦 → (𝐹𝑛) = (𝐹𝑦))
1211unieqd 4446 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 (𝐹𝑛) = (𝐹𝑦))
1312cbvixpv 7926 . . . . . . . . . . . . . . . 16 X𝑛𝐴 (𝐹𝑛) = X𝑦𝐴 (𝐹𝑦)
1410, 13eqtri 2644 . . . . . . . . . . . . . . 15 𝑋 = X𝑦𝐴 (𝐹𝑦)
159, 14syl6eqr 2674 . . . . . . . . . . . . . 14 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = 𝑋)
164, 15sylan 488 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = 𝑋)
17 ssv 3625 . . . . . . . . . . . . . . . 16 𝑋 ⊆ V
18 iineq1 4535 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = 𝑛 ∈ ∅ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
19 0iin 4578 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ∅ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V
2018, 19syl6eq 2672 . . . . . . . . . . . . . . . 16 ((𝐴𝑚) = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V)
2117, 20syl5sseqr 3654 . . . . . . . . . . . . . . 15 ((𝐴𝑚) = ∅ → 𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
2221adantl 482 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → 𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
23 df-ss 3588 . . . . . . . . . . . . . 14 (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ↔ (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
2422, 23sylib 208 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
2516, 24eqtr4d 2659 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
26 simplll 798 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝐴𝑉𝐹:𝐴⟶Top))
27 inss1 3833 . . . . . . . . . . . . . . . . 17 (𝐴𝑚) ⊆ 𝐴
28 simpr 477 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚))
2927, 28sseldi 3601 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛𝐴)
30 simprr 796 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
3130ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
32 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → (𝑦) = (𝑛))
33 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → (𝐹𝑦) = (𝐹𝑛))
3432, 33eleq12d 2695 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → ((𝑦) ∈ (𝐹𝑦) ↔ (𝑛) ∈ (𝐹𝑛)))
3534rspcv 3305 . . . . . . . . . . . . . . . . 17 (𝑛𝐴 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) → (𝑛) ∈ (𝐹𝑛)))
3629, 31, 35sylc 65 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑛) ∈ (𝐹𝑛))
3714ptpjpre1 21374 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛))) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3826, 29, 36, 37syl12anc 1324 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3938adantlr 751 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
4039iineq2dv 4543 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
41 simpr 477 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → (𝐴𝑚) ≠ ∅)
42 cnvimass 5485 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ dom (𝑤𝑋 ↦ (𝑤𝑛))
43 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑋 ↦ (𝑤𝑛)) = (𝑤𝑋 ↦ (𝑤𝑛))
4443dmmptss 5631 . . . . . . . . . . . . . . . . . . . 20 dom (𝑤𝑋 ↦ (𝑤𝑛)) ⊆ 𝑋
4542, 44sstri 3612 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋
4645, 14sseqtri 3637 . . . . . . . . . . . . . . . . . 18 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)
4746rgenw 2924 . . . . . . . . . . . . . . . . 17 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)
48 r19.2z 4060 . . . . . . . . . . . . . . . . 17 (((𝐴𝑚) ≠ ∅ ∧ ∀𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)) → ∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
4941, 47, 48sylancl 694 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
50 iinss 4571 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
5149, 50syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
5251, 14syl6sseqr 3652 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋)
53 sseqin2 3817 . . . . . . . . . . . . . 14 ( 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋 ↔ (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
5452, 53sylib 208 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
5530ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
56 ssralv 3666 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) ⊆ 𝐴 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦)))
5727, 56ax-mp 5 . . . . . . . . . . . . . . . . 17 (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦))
58 elssuni 4467 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ (𝐹𝑦))
59 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝐹𝑦))
6059sseq2d 3633 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦 = 𝑛 → ((𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (𝑦) ⊆ (𝐹𝑦)))
6158, 60syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦) ∈ (𝐹𝑦) → (¬ 𝑦 = 𝑛 → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
62 ssid 3624 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦) ⊆ (𝑦)
63 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑛))
6463, 32eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑦))
6562, 64syl5sseqr 3654 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛 → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6661, 65pm2.61d2 172 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6766ralrimivw 2967 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦) ∈ (𝐹𝑦) → ∀𝑛 ∈ (𝐴𝑚)(𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
68 ssiin 4570 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ ∀𝑛 ∈ (𝐴𝑚)(𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6967, 68sylibr 224 . . . . . . . . . . . . . . . . . . . 20 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
7069adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → (𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
7163equcoms 1947 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑦 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑛))
72 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑦 → (𝑛) = (𝑦))
7371, 72eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑦 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑦))
7473sseq1d 3632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑦 → (if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦) ↔ (𝑦) ⊆ (𝑦)))
7574rspcev 3309 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ⊆ (𝑦)) → ∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7662, 75mpan2 707 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴𝑚) → ∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
77 iinss 4571 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴𝑚) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7978adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
8070, 79eqssd 3620 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
8180ralimiaa 2951 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
8255, 57, 813syl 18 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
83 eldifn 3733 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴𝑚) → ¬ 𝑦𝑚)
8483ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → ¬ 𝑦𝑚)
85 inss2 3834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑚) ⊆ 𝑚
86 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚))
8785, 86sseldi 3601 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛𝑚)
88 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑛 → (𝑦𝑚𝑛𝑚))
8987, 88syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑦 = 𝑛𝑦𝑚))
9084, 89mtod 189 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → ¬ 𝑦 = 𝑛)
9190, 59syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝐹𝑦))
9291iineq2dv 4543 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚) (𝐹𝑦))
93 iinconst 4530 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑚) ≠ ∅ → 𝑛 ∈ (𝐴𝑚) (𝐹𝑦) = (𝐹𝑦))
9493adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚) (𝐹𝑦) = (𝐹𝑦))
9592, 94eqtr2d 2657 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → (𝐹𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
96 eqeq1 2626 . . . . . . . . . . . . . . . . . . 19 ((𝑦) = (𝐹𝑦) → ((𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (𝐹𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
9795, 96syl5ibrcom 237 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → ((𝑦) = (𝐹𝑦) → (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
9897ralimdva 2962 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) ≠ ∅ → (∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
994, 98mpan9 486 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
100 inundif 4046 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) ∪ (𝐴𝑚)) = 𝐴
101100raleqi 3142 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ ((𝐴𝑚) ∪ (𝐴𝑚))(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ ∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
102 ralunb 3794 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ ((𝐴𝑚) ∪ (𝐴𝑚))(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
103101, 102bitr3i 266 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
10482, 99, 103sylanbrc 698 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
105 ixpeq2 7922 . . . . . . . . . . . . . . 15 (∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) → X𝑦𝐴 (𝑦) = X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
106104, 105syl 17 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
107 ixpiin 7934 . . . . . . . . . . . . . . 15 ((𝐴𝑚) ≠ ∅ → X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
108107adantl 482 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
109106, 108eqtrd 2656 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
11040, 54, 1093eqtr4rd 2667 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
11125, 110pm2.61dane 2881 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
112 ixpexg 7932 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑛𝐴 (𝐹𝑛) ∈ V → X𝑛𝐴 (𝐹𝑛) ∈ V)
113 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹𝑛) ∈ V
114113uniex 6953 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑛) ∈ V
115114a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝐴 (𝐹𝑛) ∈ V)
116112, 115mprg 2926 . . . . . . . . . . . . . . . . . . . . . . 23 X𝑛𝐴 (𝐹𝑛) ∈ V
11710, 116eqeltri 2697 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 ∈ V
118117mptex 6486 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑋 ↦ (𝑤𝑛)) ∈ V
119118cnvex 7113 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝑋 ↦ (𝑤𝑛)) ∈ V
120119imaex 7104 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V
121120dfiin2 4555 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))}
122 inteq 4478 . . . . . . . . . . . . . . . . . 18 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅)
123121, 122syl5eq 2668 . . . . . . . . . . . . . . . . 17 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = ∅)
124 int0 4490 . . . . . . . . . . . . . . . . 17 ∅ = V
125123, 124syl6eq 2672 . . . . . . . . . . . . . . . 16 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V)
126125ineq2d 3814 . . . . . . . . . . . . . . 15 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = (𝑋 ∩ V))
127 inv1 3970 . . . . . . . . . . . . . . 15 (𝑋 ∩ V) = 𝑋
128126, 127syl6eq 2672 . . . . . . . . . . . . . 14 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
129128adantl 482 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
130 snex 4908 . . . . . . . . . . . . . . . . . 18 {𝑋} ∈ V
1311ptbas 21382 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases)
1321, 10ptpjpre2 21383 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵)
133132ralrimivva 2971 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → ∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵)
134 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
135134fmpt2x 7236 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵 ↔ (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
136133, 135sylib 208 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
137 frn 6053 . . . . . . . . . . . . . . . . . . . 20 ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵 → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ 𝐵)
138136, 137syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ 𝐵)
139131, 138ssexd 4805 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
140 unexg 6959 . . . . . . . . . . . . . . . . . 18 (({𝑋} ∈ V ∧ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ∈ V) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
141130, 139, 140sylancr 695 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
142 ssfii 8325 . . . . . . . . . . . . . . . . 17 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
143141, 142syl 17 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
144143ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
145 ssun1 3776 . . . . . . . . . . . . . . . . 17 {𝑋} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
146117snss 4316 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ↔ {𝑋} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
147145, 146mpbir 221 . . . . . . . . . . . . . . . 16 𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
148147a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → 𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
149144, 148sseldd 3604 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
150149adantr 481 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
151129, 150eqeltrd 2701 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
152141ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
153 nfv 1843 . . . . . . . . . . . . . . . . . . . . . 22 𝑛(((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)))
154 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛𝐴
155 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛(𝐹𝑘)
156 nfixp1 7928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑛X𝑛𝐴 (𝐹𝑛)
15710, 156nfcxfr 2762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑛𝑋
158 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑛(𝑤𝑘)
159157, 158nfmpt 4746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑛(𝑤𝑋 ↦ (𝑤𝑘))
160159nfcnv 5301 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑛(𝑤𝑋 ↦ (𝑤𝑘))
161 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑛𝑢
162160, 161nfima 5474 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)
163154, 155, 162nfmpt2 6724 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
164163nfrn 5368 . . . . . . . . . . . . . . . . . . . . . . 23 𝑛ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
165164nfcri 2758 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
166 df-ov 6653 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩)
167120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V)
168 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝑛 → (𝑤𝑘) = (𝑤𝑛))
169168mpteq2dv 4745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑛 → (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑛)))
170169cnveqd 5298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝑛(𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑛)))
171170imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝑛 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ 𝑢))
172 imaeq2 5462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = (𝑛) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
173171, 172sylan9eq 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝑛𝑢 = (𝑛)) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
174 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
175173, 174, 134ovmpt2x 6789 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛) ∧ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V) → (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
17629, 36, 167, 175syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
177166, 176syl5eqr 2670 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
178136ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
179178ffnd 6046 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) Fn 𝑘𝐴 ({𝑘} × (𝐹𝑘)))
180 opeliunxp 5170 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑛, (𝑛)⟩ ∈ 𝑛𝐴 ({𝑛} × (𝐹𝑛)) ↔ (𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛)))
18129, 36, 180sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ⟨𝑛, (𝑛)⟩ ∈ 𝑛𝐴 ({𝑛} × (𝐹𝑛)))
182 sneq 4187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → {𝑛} = {𝑘})
183 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
184182, 183xpeq12d 5140 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → ({𝑛} × (𝐹𝑛)) = ({𝑘} × (𝐹𝑘)))
185184cbviunv 4559 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑛𝐴 ({𝑛} × (𝐹𝑛)) = 𝑘𝐴 ({𝑘} × (𝐹𝑘))
186181, 185syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ⟨𝑛, (𝑛)⟩ ∈ 𝑘𝐴 ({𝑘} × (𝐹𝑘)))
187 fnfvelrn 6356 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) Fn 𝑘𝐴 ({𝑘} × (𝐹𝑘)) ∧ ⟨𝑛, (𝑛)⟩ ∈ 𝑘𝐴 ({𝑘} × (𝐹𝑘))) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
188179, 186, 187syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
189177, 188eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
190 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → (𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ↔ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
191189, 190syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
192191ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑛 ∈ (𝐴𝑚) → (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
193153, 165, 192rexlimd 3026 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
194193abssdv 3676 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
195 ssun2 3777 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
196194, 195syl6ss 3615 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
197196adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
198 simpr 477 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅)
199 simplrl 800 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑚 ∈ Fin)
200 ssfi 8180 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ Fin ∧ (𝐴𝑚) ⊆ 𝑚) → (𝐴𝑚) ∈ Fin)
201199, 85, 200sylancl 694 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝐴𝑚) ∈ Fin)
202 abrexfi 8266 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑚) ∈ Fin → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)
203201, 202syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)
204 elfir 8321 . . . . . . . . . . . . . . . . . 18 ((({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V ∧ ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅ ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
205152, 197, 198, 203, 204syl13anc 1328 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
206121, 205syl5eqel 2705 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
207 elssuni 4467 . . . . . . . . . . . . . . . 16 ( 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
208206, 207syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
209 fiuni 8334 . . . . . . . . . . . . . . . . . 18 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
210141, 209syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
211117pwid 4174 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 ∈ 𝒫 𝑋
212211a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 ∈ 𝒫 𝑋)
213212snssd 4340 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝒫 𝑋)
2141ptuni2 21379 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐵)
21510, 214syl5eq 2668 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 = 𝐵)
216 eqimss2 3658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋 = 𝐵 𝐵𝑋)
217215, 216syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵𝑋)
218 sspwuni 4611 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ⊆ 𝒫 𝑋 𝐵𝑋)
219217, 218sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 𝑋)
220138, 219sstrd 3613 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ 𝒫 𝑋)
221213, 220unssd 3789 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋)
222 sspwuni 4611 . . . . . . . . . . . . . . . . . . 19 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝑋)
223221, 222sylib 208 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝑋)
224 elssuni 4467 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
225147, 224mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
226223, 225eqssd 3620 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = 𝑋)
227210, 226eqtr3d 2658 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) = 𝑋)
228227ad3antrrr 766 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) = 𝑋)
229208, 228sseqtrd 3641 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋)
230229, 53sylib 208 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
231230, 206eqeltrd 2701 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
232151, 231pm2.61dane 2881 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
233111, 232eqeltrd 2701 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
234233rexlimdvaa 3032 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) → (∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
235234impr 649 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
2363, 235sylan2b 492 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
237 eleq1 2689 . . . . . . 7 (𝑠 = X𝑦𝐴 (𝑦) → (𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ↔ X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
238236, 237syl5ibrcom 237 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑠 = X𝑦𝐴 (𝑦) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
239238expimpd 629 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ((( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
240239exlimdv 1861 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
2412, 240syl5bi 232 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑠𝐵𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
242241ssrdv 3609 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
2431ptbasid 21378 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) ∈ 𝐵)
24410, 243syl5eqel 2705 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋𝐵)
245244snssd 4340 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝐵)
246245, 138unssd 3789 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝐵)
247 fiss 8330 . . . 4 ((𝐵 ∈ TopBases ∧ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝐵) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵))
248131, 246, 247syl2anc 693 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵))
2491ptbasin2 21381 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
250248, 249sseqtrd 3641 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ 𝐵)
251242, 250eqssd 3620 1 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  cop 4183   cuni 4436   cint 4475   ciun 4520   ciin 4521  cmpt 4729   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Xcixp 7908  Fincfn 7955  ficfi 8316  Topctop 20698  TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-top 20699  df-bases 20750
This theorem is referenced by:  ptval2  21404  xkoptsub  21457  ptcmplem1  21856  prdsxmslem2  22334
  Copyright terms: Public domain W3C validator