| Step | Hyp | Ref
| Expression |
| 1 | | ptbas.1 |
. . . . 5
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
| 2 | 1 | elpt 21375 |
. . . 4
⊢ (𝑠 ∈ 𝐵 ↔ ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) |
| 3 | | df-3an 1039 |
. . . . . . . 8
⊢ ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ↔ ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
| 4 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) |
| 5 | | disjdif2 4047 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∩ 𝑚) = ∅ → (𝐴 ∖ 𝑚) = 𝐴) |
| 6 | 5 | raleqdv 3144 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∩ 𝑚) = ∅ → (∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
| 7 | 6 | biimpac 503 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑦 ∈
(𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ∧ (𝐴 ∩ 𝑚) = ∅) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) = ∪ (𝐹‘𝑦)) |
| 8 | | ixpeq2 7922 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝐴 (ℎ‘𝑦) = ∪ (𝐹‘𝑦) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) = X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑦 ∈
(𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ∧ (𝐴 ∩ 𝑚) = ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
| 10 | | ptbasfi.2 |
. . . . . . . . . . . . . . . 16
⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
| 11 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑦 → (𝐹‘𝑛) = (𝐹‘𝑦)) |
| 12 | 11 | unieqd 4446 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑦 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑦)) |
| 13 | 12 | cbvixpv 7926 |
. . . . . . . . . . . . . . . 16
⊢ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) |
| 14 | 10, 13 | eqtri 2644 |
. . . . . . . . . . . . . . 15
⊢ 𝑋 = X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) |
| 15 | 9, 14 | syl6eqr 2674 |
. . . . . . . . . . . . . 14
⊢
((∀𝑦 ∈
(𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ∧ (𝐴 ∩ 𝑚) = ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = 𝑋) |
| 16 | 4, 15 | sylan 488 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) = ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = 𝑋) |
| 17 | | ssv 3625 |
. . . . . . . . . . . . . . . 16
⊢ 𝑋 ⊆ V |
| 18 | | iineq1 4535 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∩ 𝑚) = ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = ∩
𝑛 ∈ ∅ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 19 | | 0iin 4578 |
. . . . . . . . . . . . . . . . 17
⊢ ∩ 𝑛 ∈ ∅ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = V |
| 20 | 18, 19 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∩ 𝑚) = ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = V) |
| 21 | 17, 20 | syl5sseqr 3654 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∩ 𝑚) = ∅ → 𝑋 ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 22 | 21 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) = ∅) → 𝑋 ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 23 | | df-ss 3588 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ⊆ ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ↔ (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = 𝑋) |
| 24 | 22, 23 | sylib 208 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) = ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = 𝑋) |
| 25 | 16, 24 | eqtr4d 2659 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) = ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)))) |
| 26 | | simplll 798 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top)) |
| 27 | | inss1 3833 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∩ 𝑚) ⊆ 𝐴 |
| 28 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 𝑛 ∈ (𝐴 ∩ 𝑚)) |
| 29 | 27, 28 | sseldi 3601 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 𝑛 ∈ 𝐴) |
| 30 | | simprr 796 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) |
| 31 | 30 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) |
| 32 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑛 → (ℎ‘𝑦) = (ℎ‘𝑛)) |
| 33 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑛 → (𝐹‘𝑦) = (𝐹‘𝑛)) |
| 34 | 32, 33 | eleq12d 2695 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑛 → ((ℎ‘𝑦) ∈ (𝐹‘𝑦) ↔ (ℎ‘𝑛) ∈ (𝐹‘𝑛))) |
| 35 | 34 | rspcv 3305 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) → (ℎ‘𝑛) ∈ (𝐹‘𝑛))) |
| 36 | 29, 31, 35 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (ℎ‘𝑛) ∈ (𝐹‘𝑛)) |
| 37 | 14 | ptpjpre1 21374 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑛 ∈ 𝐴 ∧ (ℎ‘𝑛) ∈ (𝐹‘𝑛))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 38 | 26, 29, 36, 37 | syl12anc 1324 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 39 | 38 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 40 | 39 | iineq2dv 4543 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 41 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → (𝐴 ∩ 𝑚) ≠ ∅) |
| 42 | | cnvimass 5485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ dom (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) |
| 43 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) = (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) |
| 44 | 43 | dmmptss 5631 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) ⊆ 𝑋 |
| 45 | 42, 44 | sstri 3612 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ 𝑋 |
| 46 | 45, 14 | sseqtri 3637 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) |
| 47 | 46 | rgenw 2924 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑛 ∈
(𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) |
| 48 | | r19.2z 4060 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ ∀𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) → ∃𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
| 49 | 41, 47, 48 | sylancl 694 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∃𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
| 50 | | iinss 4571 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑛 ∈
(𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
| 52 | 51, 14 | syl6sseqr 3652 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ 𝑋) |
| 53 | | sseqin2 3817 |
. . . . . . . . . . . . . 14
⊢ (∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ 𝑋 ↔ (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 54 | 52, 53 | sylib 208 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 55 | 30 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) |
| 56 | | ssralv 3666 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∩ 𝑚) ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) ∈ (𝐹‘𝑦))) |
| 57 | 27, 56 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) ∈ (𝐹‘𝑦)) |
| 58 | | elssuni 4467 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → (ℎ‘𝑦) ⊆ ∪ (𝐹‘𝑦)) |
| 59 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑦 = 𝑛 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∪ (𝐹‘𝑦)) |
| 60 | 59 | sseq2d 3633 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑦 = 𝑛 → ((ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ (ℎ‘𝑦) ⊆ ∪ (𝐹‘𝑦))) |
| 61 | 58, 60 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → (¬ 𝑦 = 𝑛 → (ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
| 62 | | ssid 3624 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ‘𝑦) ⊆ (ℎ‘𝑦) |
| 63 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑛 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = (ℎ‘𝑛)) |
| 64 | 63, 32 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑛 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = (ℎ‘𝑦)) |
| 65 | 62, 64 | syl5sseqr 3654 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑛 → (ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 66 | 61, 65 | pm2.61d2 172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → (ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 67 | 66 | ralrimivw 2967 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑛 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 68 | | ssiin 4570 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ‘𝑦) ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ ∀𝑛 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 69 | 67, 68 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → (ℎ‘𝑦) ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 70 | 69 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (𝐴 ∩ 𝑚) ∧ (ℎ‘𝑦) ∈ (𝐹‘𝑦)) → (ℎ‘𝑦) ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 71 | 63 | equcoms 1947 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑦 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = (ℎ‘𝑛)) |
| 72 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑦 → (ℎ‘𝑛) = (ℎ‘𝑦)) |
| 73 | 71, 72 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑦 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = (ℎ‘𝑦)) |
| 74 | 73 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑦 → (if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦) ↔ (ℎ‘𝑦) ⊆ (ℎ‘𝑦))) |
| 75 | 74 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ (𝐴 ∩ 𝑚) ∧ (ℎ‘𝑦) ⊆ (ℎ‘𝑦)) → ∃𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
| 76 | 62, 75 | mpan2 707 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (𝐴 ∩ 𝑚) → ∃𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
| 77 | | iinss 4571 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑛 ∈
(𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
| 78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝐴 ∩ 𝑚) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
| 79 | 78 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (𝐴 ∩ 𝑚) ∧ (ℎ‘𝑦) ∈ (𝐹‘𝑦)) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
| 80 | 70, 79 | eqssd 3620 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (𝐴 ∩ 𝑚) ∧ (ℎ‘𝑦) ∈ (𝐹‘𝑦)) → (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 81 | 80 | ralimiaa 2951 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
(𝐴 ∩ 𝑚)(ℎ‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 82 | 55, 57, 81 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 83 | | eldifn 3733 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (𝐴 ∖ 𝑚) → ¬ 𝑦 ∈ 𝑚) |
| 84 | 83 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ¬ 𝑦 ∈ 𝑚) |
| 85 | | inss2 3834 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∩ 𝑚) ⊆ 𝑚 |
| 86 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 𝑛 ∈ (𝐴 ∩ 𝑚)) |
| 87 | 85, 86 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 𝑛 ∈ 𝑚) |
| 88 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑛 → (𝑦 ∈ 𝑚 ↔ 𝑛 ∈ 𝑚)) |
| 89 | 87, 88 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑦 = 𝑛 → 𝑦 ∈ 𝑚)) |
| 90 | 84, 89 | mtod 189 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ¬ 𝑦 = 𝑛) |
| 91 | 90, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∪ (𝐹‘𝑦)) |
| 92 | 91 | iineq2dv 4543 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)∪ (𝐹‘𝑦)) |
| 93 | | iinconst 4530 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∩ 𝑚) ≠ ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)∪ (𝐹‘𝑦) = ∪ (𝐹‘𝑦)) |
| 94 | 93 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)∪ (𝐹‘𝑦) = ∪ (𝐹‘𝑦)) |
| 95 | 92, 94 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) → ∪ (𝐹‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 96 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℎ‘𝑦) = ∪ (𝐹‘𝑦) → ((ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ ∪ (𝐹‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
| 97 | 95, 96 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) → ((ℎ‘𝑦) = ∪ (𝐹‘𝑦) → (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
| 98 | 97 | ralimdva 2962 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∩ 𝑚) ≠ ∅ → (∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) → ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
| 99 | 4, 98 | mpan9 486 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 100 | | inundif 4046 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∩ 𝑚) ∪ (𝐴 ∖ 𝑚)) = 𝐴 |
| 101 | 100 | raleqi 3142 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
((𝐴 ∩ 𝑚) ∪ (𝐴 ∖ 𝑚))(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 102 | | ralunb 3794 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
((𝐴 ∩ 𝑚) ∪ (𝐴 ∖ 𝑚))(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ (∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
| 103 | 101, 102 | bitr3i 266 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ (∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
| 104 | 82, 99, 103 | sylanbrc 698 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 105 | | ixpeq2 7922 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) = X𝑦 ∈ 𝐴 ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = X𝑦 ∈ 𝐴 ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 107 | | ixpiin 7934 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∩ 𝑚) ≠ ∅ → X𝑦 ∈
𝐴 ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 108 | 107 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → X𝑦 ∈
𝐴 ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 109 | 106, 108 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
| 110 | 40, 54, 109 | 3eqtr4rd 2667 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)))) |
| 111 | 25, 110 | pm2.61dane 2881 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) = (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)))) |
| 112 | | ixpexg 7932 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ∈ V → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ∈ V) |
| 113 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹‘𝑛) ∈ V |
| 114 | 113 | uniex 6953 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ∪ (𝐹‘𝑛) ∈ V |
| 115 | 114 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ 𝐴 → ∪ (𝐹‘𝑛) ∈ V) |
| 116 | 112, 115 | mprg 2926 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ∈ V |
| 117 | 10, 116 | eqeltri 2697 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑋 ∈ V |
| 118 | 117 | mptex 6486 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) ∈ V |
| 119 | 118 | cnvex 7113 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) ∈ V |
| 120 | 119 | imaex 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ V |
| 121 | 120 | dfiin2 4555 |
. . . . . . . . . . . . . . . . . 18
⊢ ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = ∩ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} |
| 122 | | inteq 4478 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → ∩ {𝑧
∣ ∃𝑛 ∈
(𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∩
∅) |
| 123 | 121, 122 | syl5eq 2668 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = ∩
∅) |
| 124 | | int0 4490 |
. . . . . . . . . . . . . . . . 17
⊢ ∩ ∅ = V |
| 125 | 123, 124 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = V) |
| 126 | 125 | ineq2d 3814 |
. . . . . . . . . . . . . . 15
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = (𝑋 ∩ V)) |
| 127 | | inv1 3970 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∩ V) = 𝑋 |
| 128 | 126, 127 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = 𝑋) |
| 129 | 128 | adantl 482 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = 𝑋) |
| 130 | | snex 4908 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑋} ∈ V |
| 131 | 1 | ptbas 21382 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases) |
| 132 | 1, 10 | ptpjpre2 21383 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑘 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝑘))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝐵) |
| 133 | 132 | ralrimivva 2971 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∀𝑘 ∈ 𝐴 ∀𝑢 ∈ (𝐹‘𝑘)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝐵) |
| 134 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 135 | 134 | fmpt2x 7236 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑘 ∈
𝐴 ∀𝑢 ∈ (𝐹‘𝑘)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝐵 ↔ (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)):∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))⟶𝐵) |
| 136 | 133, 135 | sylib 208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)):∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))⟶𝐵) |
| 137 | | frn 6053 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)):∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))⟶𝐵 → ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⊆ 𝐵) |
| 138 | 136, 137 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⊆ 𝐵) |
| 139 | 131, 138 | ssexd 4805 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V) |
| 140 | | unexg 6959 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑋} ∈ V ∧ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V) |
| 141 | 130, 139,
140 | sylancr 695 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V) |
| 142 | | ssfii 8325 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 143 | 141, 142 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 144 | 143 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 145 | | ssun1 3776 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑋} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 146 | 117 | snss 4316 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ↔ {𝑋} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 147 | 145, 146 | mpbir 221 |
. . . . . . . . . . . . . . . 16
⊢ 𝑋 ∈ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 148 | 147 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → 𝑋 ∈ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 149 | 144, 148 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 150 | 149 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 151 | 129, 150 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 152 | 141 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V) |
| 153 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑛(((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
| 154 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑛𝐴 |
| 155 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑛(𝐹‘𝑘) |
| 156 | | nfixp1 7928 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎ𝑛X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) |
| 157 | 10, 156 | nfcxfr 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑛𝑋 |
| 158 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑛(𝑤‘𝑘) |
| 159 | 157, 158 | nfmpt 4746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑛(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) |
| 160 | 159 | nfcnv 5301 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑛◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) |
| 161 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑛𝑢 |
| 162 | 160, 161 | nfima 5474 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑛(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) |
| 163 | 154, 155,
162 | nfmpt2 6724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑛(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 164 | 163 | nfrn 5368 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑛ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 165 | 164 | nfcri 2758 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑛 𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 166 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))(ℎ‘𝑛)) = ((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))‘〈𝑛, (ℎ‘𝑛)〉) |
| 167 | 120 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ V) |
| 168 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝑛 → (𝑤‘𝑘) = (𝑤‘𝑛)) |
| 169 | 168 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝑛 → (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) = (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛))) |
| 170 | 169 | cnveqd 5298 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝑛 → ◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) = ◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛))) |
| 171 | 170 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝑛 → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ 𝑢)) |
| 172 | | imaeq2 5462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑢 = (ℎ‘𝑛) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ 𝑢) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 173 | 171, 172 | sylan9eq 2676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝑛 ∧ 𝑢 = (ℎ‘𝑛)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 174 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 175 | 173, 174,
134 | ovmpt2x 6789 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 ∈ 𝐴 ∧ (ℎ‘𝑛) ∈ (𝐹‘𝑛) ∧ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ V) → (𝑛(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))(ℎ‘𝑛)) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 176 | 29, 36, 167, 175 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑛(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))(ℎ‘𝑛)) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 177 | 166, 176 | syl5eqr 2670 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))‘〈𝑛, (ℎ‘𝑛)〉) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 178 | 136 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)):∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))⟶𝐵) |
| 179 | 178 | ffnd 6046 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) Fn ∪
𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))) |
| 180 | | opeliunxp 5170 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(〈𝑛, (ℎ‘𝑛)〉 ∈ ∪ 𝑛 ∈ 𝐴 ({𝑛} × (𝐹‘𝑛)) ↔ (𝑛 ∈ 𝐴 ∧ (ℎ‘𝑛) ∈ (𝐹‘𝑛))) |
| 181 | 29, 36, 180 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 〈𝑛, (ℎ‘𝑛)〉 ∈ ∪ 𝑛 ∈ 𝐴 ({𝑛} × (𝐹‘𝑛))) |
| 182 | | sneq 4187 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑘 → {𝑛} = {𝑘}) |
| 183 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
| 184 | 182, 183 | xpeq12d 5140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 𝑘 → ({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘))) |
| 185 | 184 | cbviunv 4559 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ∪ 𝑛 ∈ 𝐴 ({𝑛} × (𝐹‘𝑛)) = ∪
𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘)) |
| 186 | 181, 185 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 〈𝑛, (ℎ‘𝑛)〉 ∈ ∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))) |
| 187 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) Fn ∪
𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘)) ∧ 〈𝑛, (ℎ‘𝑛)〉 ∈ ∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))) → ((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))‘〈𝑛, (ℎ‘𝑛)〉) ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 188 | 179, 186,
187 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))‘〈𝑛, (ℎ‘𝑛)〉) ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 189 | 177, 188 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 190 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) → (𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ↔ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 191 | 189, 190 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) → 𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 192 | 191 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑛 ∈ (𝐴 ∩ 𝑚) → (𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) → 𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 193 | 153, 165,
192 | rexlimd 3026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → (∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) → 𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 194 | 193 | abssdv 3676 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ⊆ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 195 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
| 196 | 194, 195 | syl6ss 3615 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 197 | 196 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 198 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) |
| 199 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → 𝑚 ∈ Fin) |
| 200 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ Fin ∧ (𝐴 ∩ 𝑚) ⊆ 𝑚) → (𝐴 ∩ 𝑚) ∈ Fin) |
| 201 | 199, 85, 200 | sylancl 694 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → (𝐴 ∩ 𝑚) ∈ Fin) |
| 202 | | abrexfi 8266 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∩ 𝑚) ∈ Fin → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ Fin) |
| 203 | 201, 202 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ Fin) |
| 204 | | elfir 8321 |
. . . . . . . . . . . . . . . . . 18
⊢ ((({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V ∧ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅ ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ Fin)) → ∩ {𝑧
∣ ∃𝑛 ∈
(𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 205 | 152, 197,
198, 203, 204 | syl13anc 1328 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∩ {𝑧
∣ ∃𝑛 ∈
(𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 206 | 121, 205 | syl5eqel 2705 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 207 | | elssuni 4467 |
. . . . . . . . . . . . . . . 16
⊢ (∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ ∪
(fi‘({𝑋} ∪ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 208 | 206, 207 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ ∪
(fi‘({𝑋} ∪ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 209 | | fiuni 8334 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V → ∪ ({𝑋}
∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) = ∪
(fi‘({𝑋} ∪ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 210 | 141, 209 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ ({𝑋}
∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) = ∪
(fi‘({𝑋} ∪ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 211 | 117 | pwid 4174 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑋 ∈ 𝒫 𝑋 |
| 212 | 211 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝑋 ∈ 𝒫 𝑋) |
| 213 | 212 | snssd 4340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝒫 𝑋) |
| 214 | 1 | ptuni2 21379 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐵) |
| 215 | 10, 214 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝑋 = ∪ 𝐵) |
| 216 | | eqimss2 3658 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑋 = ∪
𝐵 → ∪ 𝐵
⊆ 𝑋) |
| 217 | 215, 216 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ 𝐵
⊆ 𝑋) |
| 218 | | sspwuni 4611 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ⊆ 𝒫 𝑋 ↔ ∪ 𝐵
⊆ 𝑋) |
| 219 | 217, 218 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 𝑋) |
| 220 | 138, 219 | sstrd 3613 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⊆ 𝒫 𝑋) |
| 221 | 213, 220 | unssd 3789 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋) |
| 222 | | sspwuni 4611 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋 ↔ ∪ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝑋) |
| 223 | 221, 222 | sylib 208 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ ({𝑋}
∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝑋) |
| 224 | | elssuni 4467 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → 𝑋 ⊆ ∪
({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 225 | 147, 224 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝑋 ⊆ ∪
({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
| 226 | 223, 225 | eqssd 3620 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ ({𝑋}
∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) = 𝑋) |
| 227 | 210, 226 | eqtr3d 2658 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) = 𝑋) |
| 228 | 227 | ad3antrrr 766 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∪ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) = 𝑋) |
| 229 | 208, 228 | sseqtrd 3641 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ 𝑋) |
| 230 | 229, 53 | sylib 208 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
| 231 | 230, 206 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 232 | 151, 231 | pm2.61dane 2881 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 233 | 111, 232 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 234 | 233 | rexlimdvaa 3032 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) → (∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
| 235 | 234 | impr 649 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 236 | 3, 235 | sylan2b 492 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 237 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦) → (𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) ↔ X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
| 238 | 236, 237 | syl5ibrcom 237 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
| 239 | 238 | expimpd 629 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
| 240 | 239 | exlimdv 1861 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
| 241 | 2, 240 | syl5bi 232 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (𝑠 ∈ 𝐵 → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
| 242 | 241 | ssrdv 3609 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ⊆ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
| 243 | 1 | ptbasid 21378 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ∈ 𝐵) |
| 244 | 10, 243 | syl5eqel 2705 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝑋 ∈ 𝐵) |
| 245 | 244 | snssd 4340 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝐵) |
| 246 | 245, 138 | unssd 3789 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝐵) |
| 247 | | fiss 8330 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝐵) → (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵)) |
| 248 | 131, 246,
247 | syl2anc 693 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵)) |
| 249 | 1 | ptbasin2 21381 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
| 250 | 248, 249 | sseqtrd 3641 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) ⊆ 𝐵) |
| 251 | 242, 250 | eqssd 3620 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |