Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpidisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpidisj 33097
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)
Assertion
Ref Expression
bj-inftyexpidisj ¬ (inftyexpi ‘𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpidisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4402 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩)
2 df-bj-inftyexpi 33094 . . . . 5 inftyexpi = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
3 opex 4932 . . . . 5 𝐴, ℂ⟩ ∈ V
41, 2, 3fvmpt 6282 . . . 4 (𝐴 ∈ (-π(,]π) → (inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩)
5 opex 4932 . . . . 5 𝑥, ℂ⟩ ∈ V
65, 2dmmpti 6023 . . . 4 dom inftyexpi = (-π(,]π)
74, 6eleq2s 2719 . . 3 (𝐴 ∈ dom inftyexpi → (inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩)
8 cnex 10017 . . . . . . 7 ℂ ∈ V
98prid2 4298 . . . . . 6 ℂ ∈ {𝐴, ℂ}
10 eqid 2622 . . . . . . . 8 {𝐴, ℂ} = {𝐴, ℂ}
1110olci 406 . . . . . . 7 ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})
12 elopg 4934 . . . . . . . 8 ((𝐴 ∈ V ∧ ℂ ∈ V) → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
138, 12mpan2 707 . . . . . . 7 (𝐴 ∈ V → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
1411, 13mpbiri 248 . . . . . 6 (𝐴 ∈ V → {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩)
15 en3lp 8513 . . . . . . 7 ¬ (ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ∧ ⟨𝐴, ℂ⟩ ∈ ℂ)
1615bj-imn3ani 32572 . . . . . 6 ((ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩) → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
179, 14, 16sylancr 695 . . . . 5 (𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
18 opprc1 4425 . . . . . 6 𝐴 ∈ V → ⟨𝐴, ℂ⟩ = ∅)
19 0ncn 9954 . . . . . . 7 ¬ ∅ ∈ ℂ
20 eleq1 2689 . . . . . . 7 (⟨𝐴, ℂ⟩ = ∅ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ ∅ ∈ ℂ))
2119, 20mtbiri 317 . . . . . 6 (⟨𝐴, ℂ⟩ = ∅ → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2218, 21syl 17 . . . . 5 𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2317, 22pm2.61i 176 . . . 4 ¬ ⟨𝐴, ℂ⟩ ∈ ℂ
24 eqcom 2629 . . . . . 6 ((inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩ ↔ ⟨𝐴, ℂ⟩ = (inftyexpi ‘𝐴))
2524biimpi 206 . . . . 5 ((inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩ → ⟨𝐴, ℂ⟩ = (inftyexpi ‘𝐴))
2625eleq1d 2686 . . . 4 ((inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ (inftyexpi ‘𝐴) ∈ ℂ))
2723, 26mtbii 316 . . 3 ((inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩ → ¬ (inftyexpi ‘𝐴) ∈ ℂ)
287, 27syl 17 . 2 (𝐴 ∈ dom inftyexpi → ¬ (inftyexpi ‘𝐴) ∈ ℂ)
29 ndmfv 6218 . . . 4 𝐴 ∈ dom inftyexpi → (inftyexpi ‘𝐴) = ∅)
3029eleq1d 2686 . . 3 𝐴 ∈ dom inftyexpi → ((inftyexpi ‘𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
3119, 30mtbiri 317 . 2 𝐴 ∈ dom inftyexpi → ¬ (inftyexpi ‘𝐴) ∈ ℂ)
3228, 31pm2.61i 176 1 ¬ (inftyexpi ‘𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177  {cpr 4179  cop 4183  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  -cneg 10267  (,]cioc 12176  πcpi 14797  inftyexpi cinftyexpi 33093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-c 9942  df-bj-inftyexpi 33094
This theorem is referenced by:  bj-ccinftydisj  33100  bj-pinftynrr  33109  bj-minftynrr  33113
  Copyright terms: Public domain W3C validator