| Step | Hyp | Ref
| Expression |
| 1 | | ismeannd.mf |
. . . . 5
⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
| 2 | | fdm 6051 |
. . . . . . 7
⊢ (𝑀:𝑆⟶(0[,]+∞) → dom 𝑀 = 𝑆) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 𝑀 = 𝑆) |
| 4 | 3 | feq2d 6031 |
. . . . 5
⊢ (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞))) |
| 5 | 1, 4 | mpbird 247 |
. . . 4
⊢ (𝜑 → 𝑀:dom 𝑀⟶(0[,]+∞)) |
| 6 | | ismeannd.sal |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 7 | 3, 6 | eqeltrd 2701 |
. . . 4
⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
| 8 | 5, 7 | jca 554 |
. . 3
⊢ (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg)) |
| 9 | | ismeannd.m0 |
. . 3
⊢ (𝜑 → (𝑀‘∅) = 0) |
| 10 | | unieq 4444 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∪ ∅) |
| 11 | | uni0 4465 |
. . . . . . . . . . . . 13
⊢ ∪ ∅ = ∅ |
| 12 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ∪ ∅ = ∅) |
| 13 | 10, 12 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∅) |
| 14 | 13 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝑀‘∪ 𝑥) =
(𝑀‘∅)) |
| 15 | 14, 9 | sylan9eqr 2678 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = ∅) → (𝑀‘∪ 𝑥) = 0) |
| 16 | | reseq2 5391 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → (𝑀 ↾ 𝑥) = (𝑀 ↾ ∅)) |
| 17 | | res0 5400 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ↾ ∅) =
∅ |
| 18 | 17 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → (𝑀 ↾ ∅) =
∅) |
| 19 | 16, 18 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑀 ↾ 𝑥) = ∅) |
| 20 | 19 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ →
(Σ^‘(𝑀 ↾ 𝑥)) =
(Σ^‘∅)) |
| 21 | 20 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = ∅) →
(Σ^‘(𝑀 ↾ 𝑥)) =
(Σ^‘∅)) |
| 22 | | sge00 40593 |
. . . . . . . . . . 11
⊢
(Σ^‘∅) = 0 |
| 23 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = ∅) →
(Σ^‘∅) = 0) |
| 24 | 21, 23 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = ∅) →
(Σ^‘(𝑀 ↾ 𝑥)) = 0) |
| 25 | 15, 24 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = ∅) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 26 | 25 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑥 = ∅) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 27 | 26 | adantlr 751 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑥 = ∅) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 28 | | simpll 790 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀)) |
| 29 | | simplrr 801 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑦 ∈ 𝑥 𝑦) |
| 30 | 28, 29 | jca 554 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦)) |
| 31 | | simplrl 800 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≼ ω) |
| 32 | | neqne 2802 |
. . . . . . . . 9
⊢ (¬
𝑥 = ∅ → 𝑥 ≠ ∅) |
| 33 | 32 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅) |
| 34 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → 𝑦 = 𝑤) |
| 35 | 34 | cbvdisjv 4631 |
. . . . . . . . . . 11
⊢
(Disj 𝑦
∈ 𝑥 𝑦 ↔ Disj 𝑤 ∈ 𝑥 𝑤) |
| 36 | 35 | biimpi 206 |
. . . . . . . . . 10
⊢
(Disj 𝑦
∈ 𝑥 𝑦 → Disj 𝑤 ∈ 𝑥 𝑤) |
| 37 | 36 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) → Disj 𝑤 ∈ 𝑥 𝑤) |
| 38 | 37 | ad2antlr 763 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑤 ∈ 𝑥 𝑤) |
| 39 | 31, 33, 38 | nnfoctbdj 40673 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛))) |
| 40 | | simpl 473 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛))) → ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦)) |
| 41 | | simprl 794 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛))) → 𝑒:ℕ–onto→(𝑥 ∪ {∅})) |
| 42 | | simprr 796 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛))) → Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) |
| 43 | | founiiun0 39377 |
. . . . . . . . . . . . 13
⊢ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → ∪ 𝑥 =
∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) |
| 44 | 43 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → (𝑀‘∪ 𝑥) = (𝑀‘∪
𝑛 ∈ ℕ (𝑒‘𝑛))) |
| 45 | 44 | ad2antlr 763 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪ 𝑥) = (𝑀‘∪
𝑛 ∈ ℕ (𝑒‘𝑛))) |
| 46 | | simplll 798 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → 𝜑) |
| 47 | | fof 6115 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑒:ℕ⟶(𝑥 ∪ {∅})) |
| 48 | 47 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶(𝑥 ∪ {∅})) |
| 49 | | elpwi 4168 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝒫 dom 𝑀 → 𝑥 ⊆ dom 𝑀) |
| 50 | 49 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ⊆ dom 𝑀) |
| 51 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → dom 𝑀 = 𝑆) |
| 52 | 50, 51 | sseqtrd 3641 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ⊆ 𝑆) |
| 53 | | 0sal 40540 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆 ∈ SAlg → ∅
∈ 𝑆) |
| 54 | 6, 53 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∅ ∈ 𝑆) |
| 55 | | snssi 4339 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∅
∈ 𝑆 → {∅}
⊆ 𝑆) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {∅} ⊆ 𝑆) |
| 57 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → {∅} ⊆ 𝑆) |
| 58 | 52, 57 | unssd 3789 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → (𝑥 ∪ {∅}) ⊆ 𝑆) |
| 59 | 58 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → (𝑥 ∪ {∅}) ⊆ 𝑆) |
| 60 | 48, 59 | fssd 6057 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶𝑆) |
| 61 | 60 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → 𝑒:ℕ⟶𝑆) |
| 62 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) |
| 63 | | ismeannd.iun |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆 ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪
𝑛 ∈ ℕ (𝑒‘𝑛)) =
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛))))) |
| 64 | 46, 61, 62, 63 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪
𝑛 ∈ ℕ (𝑒‘𝑛)) =
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛))))) |
| 65 | 64 | adantllr 755 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪
𝑛 ∈ ℕ (𝑒‘𝑛)) =
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛))))) |
| 66 | 1 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑆 ↦ (𝑀‘𝑦))) |
| 67 | 66 | reseq1d 5395 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 ↾ 𝑥) = ((𝑦 ∈ 𝑆 ↦ (𝑀‘𝑦)) ↾ 𝑥)) |
| 68 | 67 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → (𝑀 ↾ 𝑥) = ((𝑦 ∈ 𝑆 ↦ (𝑀‘𝑦)) ↾ 𝑥)) |
| 69 | 68 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀 ↾ 𝑥) = ((𝑦 ∈ 𝑆 ↦ (𝑀‘𝑦)) ↾ 𝑥)) |
| 70 | 52 | resmptd 5452 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → ((𝑦 ∈ 𝑆 ↦ (𝑀‘𝑦)) ↾ 𝑥) = (𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → ((𝑦 ∈ 𝑆 ↦ (𝑀‘𝑦)) ↾ 𝑥) = (𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) |
| 72 | | snssi 4339 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∅
∈ 𝑥 → {∅}
⊆ 𝑥) |
| 73 | | ssequn2 3786 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
({∅} ⊆ 𝑥
↔ (𝑥 ∪ {∅})
= 𝑥) |
| 74 | 72, 73 | sylib 208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
∈ 𝑥 → (𝑥 ∪ {∅}) = 𝑥) |
| 75 | 74 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∅
∈ 𝑥 → 𝑥 = (𝑥 ∪ {∅})) |
| 76 | 75 | mpteq1d 4738 |
. . . . . . . . . . . . . . . . . 18
⊢ (∅
∈ 𝑥 → (𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀‘𝑦))) |
| 77 | 76 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀‘𝑦))) |
| 78 | 69, 71, 77 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀 ↾ 𝑥) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀‘𝑦))) |
| 79 | 78 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) →
(Σ^‘(𝑀 ↾ 𝑥)) =
(Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀‘𝑦)))) |
| 80 | | nfv 1843 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) |
| 81 | | simplr 792 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 ∈ 𝒫 dom 𝑀) |
| 82 | | p0ex 4853 |
. . . . . . . . . . . . . . . . . 18
⊢ {∅}
∈ V |
| 83 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → {∅} ∈
V) |
| 84 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∩ {∅}) = ∅
↔ ¬ ∅ ∈ 𝑥) |
| 85 | 84 | biimpri 218 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
∅ ∈ 𝑥 →
(𝑥 ∩ {∅}) =
∅) |
| 86 | 85 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 ∩ {∅}) = ∅) |
| 87 | 1 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ 𝑥) → 𝑀:𝑆⟶(0[,]+∞)) |
| 88 | 52 | sselda 3603 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑆) |
| 89 | 87, 88 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ 𝑥) → (𝑀‘𝑦) ∈ (0[,]+∞)) |
| 90 | 89 | adantlr 751 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (𝑀‘𝑦) ∈ (0[,]+∞)) |
| 91 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ {∅} → 𝑦 = ∅) |
| 92 | 91 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ {∅} → (𝑀‘𝑦) = (𝑀‘∅)) |
| 93 | 92 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ {∅}) → (𝑀‘𝑦) = (𝑀‘∅)) |
| 94 | 1, 54 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀‘∅) ∈
(0[,]+∞)) |
| 95 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ {∅}) → (𝑀‘∅) ∈
(0[,]+∞)) |
| 96 | 93, 95 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ {∅}) → (𝑀‘𝑦) ∈ (0[,]+∞)) |
| 97 | 96 | ad4ant14 1293 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦 ∈ {∅}) → (𝑀‘𝑦) ∈ (0[,]+∞)) |
| 98 | 80, 81, 83, 86, 90, 97 | sge0splitmpt 40628 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) →
(Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀‘𝑦))) =
((Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) +𝑒
(Σ^‘(𝑦 ∈ {∅} ↦ (𝑀‘𝑦))))) |
| 99 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = ∅ → (𝑀‘𝑦) = (𝑀‘∅)) |
| 100 | 99 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 = ∅) → (𝑀‘𝑦) = (𝑀‘∅)) |
| 101 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 = ∅) → (𝑀‘∅) = 0) |
| 102 | 100, 101 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 = ∅) → (𝑀‘𝑦) = 0) |
| 103 | 91, 102 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ {∅}) → (𝑀‘𝑦) = 0) |
| 104 | 103 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑦 ∈ {∅} ↦ (𝑀‘𝑦)) = (𝑦 ∈ {∅} ↦
0)) |
| 105 | 104 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(Σ^‘(𝑦 ∈ {∅} ↦ (𝑀‘𝑦))) =
(Σ^‘(𝑦 ∈ {∅} ↦
0))) |
| 106 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑦𝜑 |
| 107 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {∅} ∈
V) |
| 108 | 106, 107 | sge0z 40592 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(Σ^‘(𝑦 ∈ {∅} ↦ 0)) =
0) |
| 109 | 105, 108 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(Σ^‘(𝑦 ∈ {∅} ↦ (𝑀‘𝑦))) = 0) |
| 110 | 109 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
((Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) +𝑒
(Σ^‘(𝑦 ∈ {∅} ↦ (𝑀‘𝑦)))) =
((Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) +𝑒
0)) |
| 111 | 110 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) →
((Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) +𝑒
(Σ^‘(𝑦 ∈ {∅} ↦ (𝑀‘𝑦)))) =
((Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) +𝑒
0)) |
| 112 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ∈ 𝒫 dom 𝑀) |
| 113 | 68, 70 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → (𝑀 ↾ 𝑥) = (𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) |
| 114 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → 𝑀:𝑆⟶(0[,]+∞)) |
| 115 | 114, 52 | fssresd 6071 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → (𝑀 ↾ 𝑥):𝑥⟶(0[,]+∞)) |
| 116 | 113, 115 | feq1dd 39347 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → (𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦)):𝑥⟶(0[,]+∞)) |
| 117 | 112, 116 | sge0xrcl 40602 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) →
(Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) ∈
ℝ*) |
| 118 | 117 | xaddid1d 12074 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) →
((Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) +𝑒 0) =
(Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦)))) |
| 119 | 113 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) →
(Σ^‘(𝑀 ↾ 𝑥)) =
(Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦)))) |
| 120 | 119 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) →
(Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 121 | 118, 120 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) →
((Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) +𝑒 0) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 122 | 121 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) →
((Σ^‘(𝑦 ∈ 𝑥 ↦ (𝑀‘𝑦))) +𝑒 0) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 123 | 98, 111, 122 | 3eqtrrd 2661 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) →
(Σ^‘(𝑀 ↾ 𝑥)) =
(Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀‘𝑦)))) |
| 124 | 79, 123 | pm2.61dan 832 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) →
(Σ^‘(𝑀 ↾ 𝑥)) =
(Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀‘𝑦)))) |
| 125 | 124 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) →
(Σ^‘(𝑀 ↾ 𝑥)) =
(Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀‘𝑦)))) |
| 126 | | nfv 1843 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) |
| 127 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) |
| 128 | | nfdisj1 4633 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛Disj
𝑛 ∈ ℕ (𝑒‘𝑛) |
| 129 | 127, 128 | nfan 1828 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) |
| 130 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑒‘𝑛) → (𝑀‘𝑦) = (𝑀‘(𝑒‘𝑛))) |
| 131 | | nnex 11026 |
. . . . . . . . . . . . . . 15
⊢ ℕ
∈ V |
| 132 | 131 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → ℕ ∈ V) |
| 133 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → 𝑒:ℕ–onto→(𝑥 ∪ {∅})) |
| 134 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) ∧ 𝑛 ∈ ℕ) → (𝑒‘𝑛) = (𝑒‘𝑛)) |
| 135 | 1 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑀:𝑆⟶(0[,]+∞)) |
| 136 | 58 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑦 ∈ 𝑆) |
| 137 | 135, 136 | ffvelrnd 6360 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀‘𝑦) ∈ (0[,]+∞)) |
| 138 | 137 | ad4ant14 1293 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀‘𝑦) ∈ (0[,]+∞)) |
| 139 | 46, 102 | sylan 488 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) ∧ 𝑦 = ∅) → (𝑀‘𝑦) = 0) |
| 140 | 126, 129,
130, 132, 133, 62, 134, 138, 139 | sge0fodjrn 40634 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) →
(Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀‘𝑦))) =
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛))))) |
| 141 | 125, 140 | eqtr2d 2657 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) →
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛)))) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 142 | 141 | adantllr 755 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) →
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛)))) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 143 | 45, 65, 142 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 144 | 40, 41, 42, 143 | syl21anc 1325 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛))) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 145 | 144 | ex 450 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ((𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))) |
| 146 | 145 | exlimdv 1861 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))) |
| 147 | 30, 39, 146 | sylc 65 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 148 | 27, 147 | pm2.61dan 832 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))) |
| 149 | 148 | ex 450 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑀) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))) |
| 150 | 149 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥)))) |
| 151 | 8, 9, 150 | jca31 557 |
. 2
⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))))) |
| 152 | | ismea 40668 |
. 2
⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑥 ∈ 𝒫
dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) =
(Σ^‘(𝑀 ↾ 𝑥))))) |
| 153 | 151, 152 | sylibr 224 |
1
⊢ (𝜑 → 𝑀 ∈ Meas) |