![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issal | Structured version Visualization version GIF version |
Description: Express the predicate "𝑆 is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
issal | ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2690 | . . 3 ⊢ (𝑥 = 𝑆 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑆)) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
3 | unieq 4444 | . . . . . 6 ⊢ (𝑥 = 𝑆 → ∪ 𝑥 = ∪ 𝑆) | |
4 | 3 | difeq1d 3727 | . . . . 5 ⊢ (𝑥 = 𝑆 → (∪ 𝑥 ∖ 𝑦) = (∪ 𝑆 ∖ 𝑦)) |
5 | 4, 2 | eleq12d 2695 | . . . 4 ⊢ (𝑥 = 𝑆 → ((∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ↔ (∪ 𝑆 ∖ 𝑦) ∈ 𝑆)) |
6 | 2, 5 | raleqbidv 3152 | . . 3 ⊢ (𝑥 = 𝑆 → (∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆)) |
7 | pweq 4161 | . . . 4 ⊢ (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆) | |
8 | eleq2 2690 | . . . . 5 ⊢ (𝑥 = 𝑆 → (∪ 𝑦 ∈ 𝑥 ↔ ∪ 𝑦 ∈ 𝑆)) | |
9 | 8 | imbi2d 330 | . . . 4 ⊢ (𝑥 = 𝑆 → ((𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥) ↔ (𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
10 | 7, 9 | raleqbidv 3152 | . . 3 ⊢ (𝑥 = 𝑆 → (∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
11 | 1, 6, 10 | 3anbi123d 1399 | . 2 ⊢ (𝑥 = 𝑆 → ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥)) ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
12 | df-salg 40529 | . 2 ⊢ SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥))} | |
13 | 11, 12 | elab2g 3353 | 1 ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∖ cdif 3571 ∅c0 3915 𝒫 cpw 4158 ∪ cuni 4436 class class class wbr 4653 ωcom 7065 ≼ cdom 7953 SAlgcsalg 40528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 df-salg 40529 |
This theorem is referenced by: pwsal 40535 salunicl 40536 saluncl 40537 prsal 40538 saldifcl 40539 0sal 40540 intsal 40548 issald 40551 caragensal 40739 |
Copyright terms: Public domain | W3C validator |