![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0tsk | Structured version Visualization version GIF version |
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
0tsk | ⊢ ∅ ∈ Tarski |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4076 | . 2 ⊢ ∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) | |
2 | elsni 4194 | . . . . 5 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
3 | 0ex 4790 | . . . . . . . 8 ⊢ ∅ ∈ V | |
4 | 3 | enref 7988 | . . . . . . 7 ⊢ ∅ ≈ ∅ |
5 | breq1 4656 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅)) | |
6 | 4, 5 | mpbiri 248 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 ≈ ∅) |
7 | 6 | orcd 407 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
9 | pw0 4343 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
10 | 8, 9 | eleq2s 2719 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
11 | 10 | rgen 2922 | . 2 ⊢ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅) |
12 | eltsk2g 9573 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))) | |
13 | 3, 12 | ax-mp 5 | . 2 ⊢ (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))) |
14 | 1, 11, 13 | mpbir2an 955 | 1 ⊢ ∅ ∈ Tarski |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 {csn 4177 class class class wbr 4653 ≈ cen 7952 Tarskictsk 9570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-en 7956 df-tsk 9571 |
This theorem is referenced by: r1tskina 9604 grutsk 9644 tskmcl 9663 |
Copyright terms: Public domain | W3C validator |