MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tskina Structured version   Visualization version   GIF version

Theorem r1tskina 9604
Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
r1tskina (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))

Proof of Theorem r1tskina
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2795 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 simplr 792 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ∈ Tarski)
3 simpll 790 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
4 onwf 8693 . . . . . . . . . . . . . . . 16 On ⊆ (𝑅1 “ On)
54sseli 3599 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → 𝐴 (𝑅1 “ On))
6 eqid 2622 . . . . . . . . . . . . . . . 16 (rank‘𝐴) = (rank‘𝐴)
7 rankr1c 8684 . . . . . . . . . . . . . . . 16 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))))
86, 7mpbii 223 . . . . . . . . . . . . . . 15 (𝐴 (𝑅1 “ On) → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
95, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
109simpld 475 . . . . . . . . . . . . 13 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
11 r1fnon 8630 . . . . . . . . . . . . . . . . 17 𝑅1 Fn On
12 fndm 5990 . . . . . . . . . . . . . . . . 17 (𝑅1 Fn On → dom 𝑅1 = On)
1311, 12ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝑅1 = On
1413eleq2i 2693 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
15 rankonid 8692 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
1614, 15bitr3i 266 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ (rank‘𝐴) = 𝐴)
17 fveq2 6191 . . . . . . . . . . . . . 14 ((rank‘𝐴) = 𝐴 → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1816, 17sylbi 207 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1910, 18neleqtrd 2722 . . . . . . . . . . . 12 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1𝐴))
2019adantl 482 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → ¬ 𝐴 ∈ (𝑅1𝐴))
21 onssr1 8694 . . . . . . . . . . . . . 14 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2214, 21sylbir 225 . . . . . . . . . . . . 13 (𝐴 ∈ On → 𝐴 ⊆ (𝑅1𝐴))
23 tsken 9576 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ⊆ (𝑅1𝐴)) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2422, 23sylan2 491 . . . . . . . . . . . 12 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2524ord 392 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (¬ 𝐴 ≈ (𝑅1𝐴) → 𝐴 ∈ (𝑅1𝐴)))
2620, 25mt3d 140 . . . . . . . . . 10 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → 𝐴 ≈ (𝑅1𝐴))
272, 3, 26syl2anc 693 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ (𝑅1𝐴))
28 carden2b 8793 . . . . . . . . 9 (𝐴 ≈ (𝑅1𝐴) → (card‘𝐴) = (card‘(𝑅1𝐴)))
2927, 28syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = (card‘(𝑅1𝐴)))
30 simpl 473 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ∈ On)
31 simplr 792 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ∈ Tarski)
3222adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ⊆ (𝑅1𝐴))
3332sselda 3603 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1𝐴))
34 tsksdom 9578 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ≺ (𝑅1𝐴))
3531, 33, 34syl2anc 693 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ≺ (𝑅1𝐴))
36 simpll 790 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝐴 ∈ On)
3726ensymd 8007 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝑅1𝐴) ≈ 𝐴)
3831, 36, 37syl2anc 693 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ≈ 𝐴)
39 sdomentr 8094 . . . . . . . . . . . 12 ((𝑥 ≺ (𝑅1𝐴) ∧ (𝑅1𝐴) ≈ 𝐴) → 𝑥𝐴)
4035, 38, 39syl2anc 693 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥𝐴)
4140ralrimiva 2966 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → ∀𝑥𝐴 𝑥𝐴)
42 iscard 8801 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
4330, 41, 42sylanbrc 698 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (card‘𝐴) = 𝐴)
4443adantr 481 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = 𝐴)
4529, 44eqtr3d 2658 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) = 𝐴)
46 r10 8631 . . . . . . . . . . 11 (𝑅1‘∅) = ∅
47 on0eln0 5780 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
4847biimpar 502 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
49 r1sdom 8637 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5048, 49syldan 487 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5146, 50syl5eqbrr 4689 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ≺ (𝑅1𝐴))
52 fvex 6201 . . . . . . . . . . 11 (𝑅1𝐴) ∈ V
53520sdom 8091 . . . . . . . . . 10 (∅ ≺ (𝑅1𝐴) ↔ (𝑅1𝐴) ≠ ∅)
5451, 53sylib 208 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
5554adantlr 751 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
56 tskcard 9603 . . . . . . . 8 (((𝑅1𝐴) ∈ Tarski ∧ (𝑅1𝐴) ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
572, 55, 56syl2anc 693 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
5845, 57eqeltrrd 2702 . . . . . 6 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Inacc)
5958ex 450 . . . . 5 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 ≠ ∅ → 𝐴 ∈ Inacc))
601, 59syl5bir 233 . . . 4 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (¬ 𝐴 = ∅ → 𝐴 ∈ Inacc))
6160orrd 393 . . 3 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc))
6261ex 450 . 2 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
63 fveq2 6191 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
6463, 46syl6eq 2672 . . . 4 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
65 0tsk 9577 . . . 4 ∅ ∈ Tarski
6664, 65syl6eqel 2709 . . 3 (𝐴 = ∅ → (𝑅1𝐴) ∈ Tarski)
67 inatsk 9600 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)
6866, 67jaoi 394 . 2 ((𝐴 = ∅ ∨ 𝐴 ∈ Inacc) → (𝑅1𝐴) ∈ Tarski)
6962, 68impbid1 215 1 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915   cuni 4436   class class class wbr 4653  dom cdm 5114  cima 5117  Oncon0 5723  suc csuc 5725   Fn wfn 5883  cfv 5888  cen 7952  csdm 7954  𝑅1cr1 8625  rankcrnk 8626  cardccrd 8761  Inacccina 9505  Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-r1 8627  df-rank 8628  df-card 8765  df-aleph 8766  df-cf 8767  df-acn 8768  df-ac 8939  df-wina 9506  df-ina 9507  df-tsk 9571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator