![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grutsk | Structured version Visualization version GIF version |
Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
grutsk | ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0tsk 9577 | . . . . . . . 8 ⊢ ∅ ∈ Tarski | |
2 | eleq1 2689 | . . . . . . . 8 ⊢ (𝑦 = ∅ → (𝑦 ∈ Tarski ↔ ∅ ∈ Tarski)) | |
3 | 1, 2 | mpbiri 248 | . . . . . . 7 ⊢ (𝑦 = ∅ → 𝑦 ∈ Tarski) |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 = ∅ → 𝑦 ∈ Tarski)) |
5 | vex 3203 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
6 | unir1 8676 | . . . . . . . . . . 11 ⊢ ∪ (𝑅1 “ On) = V | |
7 | 5, 6 | eleqtrri 2700 | . . . . . . . . . 10 ⊢ 𝑦 ∈ ∪ (𝑅1 “ On) |
8 | eqid 2622 | . . . . . . . . . . 11 ⊢ (𝑦 ∩ On) = (𝑦 ∩ On) | |
9 | 8 | grur1 9642 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ∈ ∪ (𝑅1 “ On)) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
10 | 7, 9 | mpan2 707 | . . . . . . . . 9 ⊢ (𝑦 ∈ Univ → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
11 | 10 | adantr 481 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 = (𝑅1‘(𝑦 ∩ On))) |
12 | 8 | gruina 9640 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑦 ∩ On) ∈ Inacc) |
13 | inatsk 9600 | . . . . . . . . 9 ⊢ ((𝑦 ∩ On) ∈ Inacc → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) | |
14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → (𝑅1‘(𝑦 ∩ On)) ∈ Tarski) |
15 | 11, 14 | eqeltrd 2701 | . . . . . . 7 ⊢ ((𝑦 ∈ Univ ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Tarski) |
16 | 15 | ex 450 | . . . . . 6 ⊢ (𝑦 ∈ Univ → (𝑦 ≠ ∅ → 𝑦 ∈ Tarski)) |
17 | 4, 16 | pm2.61dne 2880 | . . . . 5 ⊢ (𝑦 ∈ Univ → 𝑦 ∈ Tarski) |
18 | grutr 9615 | . . . . 5 ⊢ (𝑦 ∈ Univ → Tr 𝑦) | |
19 | 17, 18 | jca 554 | . . . 4 ⊢ (𝑦 ∈ Univ → (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
20 | grutsk1 9643 | . . . 4 ⊢ ((𝑦 ∈ Tarski ∧ Tr 𝑦) → 𝑦 ∈ Univ) | |
21 | 19, 20 | impbii 199 | . . 3 ⊢ (𝑦 ∈ Univ ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
22 | treq 4758 | . . . 4 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
23 | 22 | elrab 3363 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥} ↔ (𝑦 ∈ Tarski ∧ Tr 𝑦)) |
24 | 21, 23 | bitr4i 267 | . 2 ⊢ (𝑦 ∈ Univ ↔ 𝑦 ∈ {𝑥 ∈ Tarski ∣ Tr 𝑥}) |
25 | 24 | eqriv 2619 | 1 ⊢ Univ = {𝑥 ∈ Tarski ∣ Tr 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 {crab 2916 Vcvv 3200 ∩ cin 3573 ∅c0 3915 ∪ cuni 4436 Tr wtr 4752 “ cima 5117 Oncon0 5723 ‘cfv 5888 𝑅1cr1 8625 Inacccina 9505 Tarskictsk 9570 Univcgru 9612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 ax-ac2 9285 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-smo 7443 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-har 8463 df-tc 8613 df-r1 8627 df-rank 8628 df-card 8765 df-aleph 8766 df-cf 8767 df-acn 8768 df-ac 8939 df-wina 9506 df-ina 9507 df-tsk 9571 df-gru 9613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |