MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vfval Structured version   Visualization version   GIF version

Theorem 0vfval 27461
Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0vfval.2 𝐺 = ( +𝑣𝑈)
0vfval.5 𝑍 = (0vec𝑈)
Assertion
Ref Expression
0vfval (𝑈𝑉𝑍 = (GId‘𝐺))

Proof of Theorem 0vfval
StepHypRef Expression
1 elex 3212 . 2 (𝑈𝑉𝑈 ∈ V)
2 fo1st 7188 . . . . . . 7 1st :V–onto→V
3 fofn 6117 . . . . . . 7 (1st :V–onto→V → 1st Fn V)
42, 3ax-mp 5 . . . . . 6 1st Fn V
5 ssv 3625 . . . . . 6 ran 1st ⊆ V
6 fnco 5999 . . . . . 6 ((1st Fn V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V)
74, 4, 5, 6mp3an 1424 . . . . 5 (1st ∘ 1st ) Fn V
8 df-va 27450 . . . . . 6 +𝑣 = (1st ∘ 1st )
98fneq1i 5985 . . . . 5 ( +𝑣 Fn V ↔ (1st ∘ 1st ) Fn V)
107, 9mpbir 221 . . . 4 +𝑣 Fn V
11 fvco2 6273 . . . 4 (( +𝑣 Fn V ∧ 𝑈 ∈ V) → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
1210, 11mpan 706 . . 3 (𝑈 ∈ V → ((GId ∘ +𝑣 )‘𝑈) = (GId‘( +𝑣𝑈)))
13 0vfval.5 . . . 4 𝑍 = (0vec𝑈)
14 df-0v 27453 . . . . 5 0vec = (GId ∘ +𝑣 )
1514fveq1i 6192 . . . 4 (0vec𝑈) = ((GId ∘ +𝑣 )‘𝑈)
1613, 15eqtri 2644 . . 3 𝑍 = ((GId ∘ +𝑣 )‘𝑈)
17 0vfval.2 . . . 4 𝐺 = ( +𝑣𝑈)
1817fveq2i 6194 . . 3 (GId‘𝐺) = (GId‘( +𝑣𝑈))
1912, 16, 183eqtr4g 2681 . 2 (𝑈 ∈ V → 𝑍 = (GId‘𝐺))
201, 19syl 17 1 (𝑈𝑉𝑍 = (GId‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  ran crn 5115  ccom 5118   Fn wfn 5883  ontowfo 5886  cfv 5888  1st c1st 7166  GIdcgi 27344   +𝑣 cpv 27440  0veccn0v 27443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-va 27450  df-0v 27453
This theorem is referenced by:  nvi  27469  nvzcl  27489  nv0rid  27490  nv0lid  27491  nv0  27492  nvsz  27493  nvrinv  27506  nvlinv  27507  hh0v  28025
  Copyright terms: Public domain W3C validator