MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2f1fvneq Structured version   Visualization version   GIF version

Theorem 2f1fvneq 6517
Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
2f1fvneq (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))

Proof of Theorem 2f1fvneq
StepHypRef Expression
1 f1veqaeq 6514 . . . . 5 ((𝐹:𝐶1-1𝐷 ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
21adantll 750 . . . 4 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
32necon3ad 2807 . . 3 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐵 → ¬ (𝐹𝐴) = (𝐹𝐵)))
433impia 1261 . 2 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → ¬ (𝐹𝐴) = (𝐹𝐵))
5 simpll 790 . . . . . . 7 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → 𝐸:𝐷1-1𝑅)
6 f1f 6101 . . . . . . . . . 10 (𝐹:𝐶1-1𝐷𝐹:𝐶𝐷)
7 ffvelrn 6357 . . . . . . . . . . . 12 ((𝐹:𝐶𝐷𝐴𝐶) → (𝐹𝐴) ∈ 𝐷)
8 ffvelrn 6357 . . . . . . . . . . . 12 ((𝐹:𝐶𝐷𝐵𝐶) → (𝐹𝐵) ∈ 𝐷)
97, 8anim12dan 882 . . . . . . . . . . 11 ((𝐹:𝐶𝐷 ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷))
109ex 450 . . . . . . . . . 10 (𝐹:𝐶𝐷 → ((𝐴𝐶𝐵𝐶) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)))
116, 10syl 17 . . . . . . . . 9 (𝐹:𝐶1-1𝐷 → ((𝐴𝐶𝐵𝐶) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)))
1211adantl 482 . . . . . . . 8 ((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) → ((𝐴𝐶𝐵𝐶) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)))
1312imp 445 . . . . . . 7 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷))
14 f1veqaeq 6514 . . . . . . 7 ((𝐸:𝐷1-1𝑅 ∧ ((𝐹𝐴) ∈ 𝐷 ∧ (𝐹𝐵) ∈ 𝐷)) → ((𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) → (𝐹𝐴) = (𝐹𝐵)))
155, 13, 14syl2anc 693 . . . . . 6 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) → (𝐹𝐴) = (𝐹𝐵)))
1615con3dimp 457 . . . . 5 ((((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) ∧ ¬ (𝐹𝐴) = (𝐹𝐵)) → ¬ (𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)))
17 eqeq12 2635 . . . . . . 7 (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → ((𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) ↔ 𝑋 = 𝑌))
1817notbid 308 . . . . . 6 (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → (¬ (𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) ↔ ¬ 𝑋 = 𝑌))
19 df-ne 2795 . . . . . . 7 (𝑋𝑌 ↔ ¬ 𝑋 = 𝑌)
2019biimpri 218 . . . . . 6 𝑋 = 𝑌𝑋𝑌)
2118, 20syl6bi 243 . . . . 5 (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → (¬ (𝐸‘(𝐹𝐴)) = (𝐸‘(𝐹𝐵)) → 𝑋𝑌))
2216, 21syl5com 31 . . . 4 ((((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) ∧ ¬ (𝐹𝐴) = (𝐹𝐵)) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))
2322ex 450 . . 3 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶)) → (¬ (𝐹𝐴) = (𝐹𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌)))
24233adant3 1081 . 2 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (¬ (𝐹𝐴) = (𝐹𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌)))
254, 24mpd 15 1 (((𝐸:𝐷1-1𝑅𝐹:𝐶1-1𝐷) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → (((𝐸‘(𝐹𝐴)) = 𝑋 ∧ (𝐸‘(𝐹𝐵)) = 𝑌) → 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wf 5884  1-1wf1 5885  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896
This theorem is referenced by:  usgr2pthlem  26659
  Copyright terms: Public domain W3C validator