![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
2 | neneq 2800 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | nsyli 155 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ≠ wne 2794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2795 |
This theorem is referenced by: necon1ad 2811 necon3d 2815 disjpss 4028 2f1fvneq 6517 oeeulem 7681 enp1i 8195 canthp1lem2 9475 winalim2 9518 nlt1pi 9728 sqreulem 14099 rpnnen2lem11 14953 eucalglt 15298 nprm 15401 pcprmpw2 15586 pcmpt 15596 expnprm 15606 prmlem0 15812 pltnle 16966 psgnunilem1 17913 pgpfi 18020 frgpnabllem1 18276 gsumval3a 18304 ablfac1eulem 18471 pgpfaclem2 18481 lspdisjb 19126 lspdisj2 19127 obselocv 20072 0nnei 20916 t0dist 21129 t1sep 21174 ordthauslem 21187 hausflim 21785 bcthlem5 23125 bcth 23126 fta1g 23927 plyco0 23948 dgrnznn 24003 coeaddlem 24005 fta1 24063 vieta1lem2 24066 logcnlem3 24390 dvloglem 24394 dcubic 24573 mumullem2 24906 2sqlem8a 25150 dchrisum0flblem1 25197 colperpexlem2 25623 1loopgrnb0 26398 usgr2trlncrct 26698 ocnel 28157 hatomistici 29221 sibfof 30402 outsideofrflx 32234 poimirlem23 33432 mblfinlem1 33446 cntotbnd 33595 heiborlem6 33615 lshpnel 34270 lshpcmp 34275 lfl1 34357 lkrshp 34392 lkrpssN 34450 atnlt 34600 atnle 34604 atlatmstc 34606 intnatN 34693 atbtwn 34732 llnnlt 34809 lplnnlt 34851 2llnjaN 34852 lvolnltN 34904 2lplnja 34905 dalem-cly 34957 dalem44 35002 2llnma3r 35074 cdlemblem 35079 lhpm0atN 35315 lhp2atnle 35319 cdlemednpq 35586 cdleme22cN 35630 cdlemg18b 35967 cdlemg42 36017 dia2dimlem1 36353 dochkrshp 36675 hgmapval0 37184 |
Copyright terms: Public domain | W3C validator |